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Abstract
The motion in time-dependent fluid flows is governed by Lagrangian coherent structures (LCS). One common approach to
visualize hyperbolic LCS is to extract and visualize the finite-time Lyapunov exponent. Its visualization on large time-dependent
fluid flow is challenging for two reasons. First, the time steps needed for particle tracing do not necessarily fit at once into
memory. And second, conventional ray marching exhibits artifacts when the FTLE ridges are sharp, which instead requires
Monte Carlo volume rendering techniques to produce unbiased results. So far, these two problems have only been looked at
in isolation. In this paper, we implement the first out-of-core Monte Carlo FTLE tracer, which is able to visualize the finite-
time Lyapunov exponent field of time-dependent fluid flows that do not fit into main memory at once. To achieve this, we
designed a data processing pipeline that alternates between two phases: a photon tracing phase and a particle tracing phase.
We demonstrate and evaluate the approach on several large time-dependent vector fields.

CCS Concepts
• Human-centered computing → Scientific visualization; • Computing methodologies → Ray tracing;

1. Introduction

The transport analysis of time-dependent fluid flows is among the
greatest open challenges in flow visualization [BYH∗20]. One ap-
proach to address this problem is to extract and visualize hyperbolic
Lagrangian Coherent Structures (LCS) [Hal15], which govern the
temporal evolution of the fluid flow, since they act as attracting and
repelling transport barriers. In flow visualization, the finite-time
Lyapunov exponent (FTLE) is a widely-used scalar measure that
exhibits ridges along hyperbolic transport barriers. In the light of
ever-increasing data resolutions, the extraction of FTLE is chal-
lenging for two reasons. First, the FTLE measure is fundamentally
based on the observation of particles over time, which has an un-
bounded memory requirement when all time steps need to fit into
main memory at once, making it necessary to design distributed
or out-of-core particle tracing systems [CS13]. Second, the FTLE
measure can exhibit fine ridge structures that are much smaller
than the flow data resolution, which requires Monte Carlo volume
visualization in order to reach groundtruth level quality without
grid discretization artifacts [GKT16,BRGG20]. The two aforemen-
tioned problems have been addressed in isolation. In this paper, we
implement the first out-of-core Monte Carlo FTLE tracer, making
it for the first time possible to calculate Monte Carlo volume visu-
alizations for time-dependent flows that do not fit into memory. For
this, we design a data processing pipeline that alternates between
two phases: a photon tracing phase and a particle tracing phase.
The photon tracing phase either uses Delta tracking [WMHL65]

(on view rays) or a transmittance estimator [Spa66,NSJ14] (on light
rays) to advance the photons one step forward. The decision on how
to proceed with a photon depends on the FTLE value, which has
to be calculated for every single sample point during photon trac-
ing. Thus, the second phase traces particles in a fluid flow, which
is streamed to the GPU via a ring buffer. To hide the memory IO
latency of the fluid flow streaming, we launch more photons to oc-
cupy the GPU, minimizing unnecessary idle time. We investigate
the impact of several design decisions, including the utilization of
pre-fetching and the utilization of NVMe direct storage to lower
the loading times. In summary, we contribute:

• An interleaved photon and particle tracing scheme that paral-
lelizes over pixels and particles, and operates on streamed fluid
flow data with bounded memory consumption.

• An evaluation of the benefits of pre-fetching, NVMe direct stor-
age, and ray batching in the context of Monte Carlo FTLE, which
obtains a speed-up of up to factor 23.

We evaluate the GPU utilization of the approach on three time-
dependent vector fields, and present visual results and timing mea-
surements for all test scenes.

2. Background

In the following, we introduce the fundamental basics for the two
main ingredients of our out-of-core Monte Carlo FTLE renderer.
The subsequent section covers related work in these two areas.
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xc camera position
xi virtual event on view ray
xs scattering location
x j virtual event on light ray

xk+1 real event on light ray
xl light position

ω⃗o view ray direction
ω⃗i light ray direction

Figure 1: Overview of notations during single-scattering.

2.1. Particle Transport in Fluid Flow

In this work, we are concerned with the visualization of a three-
dimensional unsteady vector field, formally denoted as v(x, t) :
R3×R→ R3, where x is a spatial position, t is a point in time,
and v(x, t) is the velocity at position x at time t, which describes
the fluid flow of air or liquid at a point in the space-time domain.

Particle Tracing. In a vector field v(x, t), the trajectory of a mass-
less particle is governed by the first-order differential equation:

dx(t)
dt

= v(x(t), t). (1)

For an initial position x(t0) = x0 and start time t0, the location
reached after integration duration τ is given by the flow map φ

τ
t0(x):

φ
τ
t0(x) = x0 +

∫ t0+τ

t0
v(x(t), t) dt (2)

Note that the tracing process requires access to all vector field time
steps in the considered time range [t0, t0 + τ].

Finite-Time Lyapunov Exponents. The finite-time Lyapunov ex-
ponent (FTLE) [Hal02] is a scalar field that measures the maxi-
mum rate of separation between particles released close to each
other from a specific point x at time t after integration duration τ.
It can be computed in forward and backward time, where ridges in
the forward FTLE field represent repelling LCS, while backward
FTLE reveals attracting LCS. FTLE estimates the separation by
computing the largest eigenvalue λmax of the right Cauchy-Green
deformation tensor, which is mapped logarithmically, cf. [Hal15]:

FTLE(x, t,τ) = 1
|τ| ln

(√
λmax(∇φτ

t0(x)T∇φτ
t0(x))

)
(3)

For notational convenience, we later drop the dependence on start
time t and duration τ and abbreviate it as f (x) := FTLE(x, t,τ).

2.2. Monte Carlo Volume Rendering

Volumetric Radiance Integral. In volume rendering, the radiance
at a point xc, arriving from direction ω⃗o is calculated by moving
the scattering point xs along a ray xs = xc− s · ω⃗o for s ∈ [0,d] and
gathering the incoming radiance Li(xs← ω⃗o) reflected towards ω⃗o.

L(xc← ω⃗o) =
∫ d

0
µs(xs) ·T (xc← xs) ·Li(xs← ω⃗o) ds (4)

where µs denotes the probability of a scattering event occurring per
unit distance and the transmittance T (a← b) measures the frac-
tion of light that went extinct along a ray segment from point b to

point a, i.e., T (a← b) = L(a)/L(b), which can be computed by
integrating the extinction coefficient µt [GMH∗19]:

T (a← b) = exp
(
−

∫ 1

0
µt(s ·a+(1− s) ·b) ds

)
(5)

In a single-scattering participating medium, the incoming radiance
Li from a light source with radiance Le being placed at position xl ,
coming in from direction ω⃗i at xs is [KF12]:

Li(xs← ω⃗o) = ρ(xs, ω⃗o← ω⃗i) ·T (xs← xl) ·Le (6)

where ρ(xs, ω⃗o← ω⃗i) is the phase function, which models the frac-
tion of light at xs being reflected from direction ω⃗i in direction ω⃗o.

The integral in Eq. (4) can be solved by Monte Carlo integra-
tion by sampling the scattering location xs on the view ray N times
according to the probability distribution p(xs) as follows [GKT16]:

L(xc← ω⃗o)≈

1
N

N

∑
n=1

µs(xs) ·T (xc← xs) ·ρ(xs, ω⃗o← ω⃗i) ·T (xs← xl) ·Le

p(xs)
(7)

Evaluating this sum requires two ingredients: the sampling of scat-
tering points xs and the estimation of transmittance T (xs ← xl),
which are explained in the following. Fig. 1 provides an overview
of positional and directional variables used throughout the paper.

Free-flight Sampling. The process of placing scattering locations
xs according to the probability distribution p(xs) = µt(xs) ·T (xc←
xs) is called free-flight sampling. One approach is Delta track-
ing [WMHL65]. The algorithm adds a fictitious spatially-varying
medium µn(x) with perfect forward scattering to the spatially-
varying extinction µt(x) to reach a spatially-constant majorant ex-
tinction µt(x) = µt(x) + µn(x). In the spatially-constant medium,
the free-flight distance di−di−1 is sampled analytically

di = di−1−
ln(1−ηi)

µt
, xi = xc−di · ω⃗o (8)

which is repeated until a real scattering event occurred, which has
the probability µt(xi)/µt(xi). Thus, the scattering location xs is:

xs = xc−dî · ω⃗o with î = arg mini
µt(xi)

µt
≥ ζi (9)

Thereby, both ηi and ζi draw uniformly distributed random num-
bers in [0,1) and the initial distance is d0 = 0.

Transmittance Estimation. Many transmittance estimators

T (xs← xl)≈
1
N

N

∑
n=1

T̂ (xs← xl) (10)

have been explored by the graphics community [GMH∗19]. The
simplest unbiased estimator is the track length estimator [Spa66,
SG08], which sends a photon from xs to xl :

T̂ (xs← xl) =

{
1 if ∥xl−xs∥ ≤ ∥xk+1−xs∥
0 else

(11)

where xk+1 is the first real event after k virtual scattering events.
The track length estimator assigns a score of 1 when a particle
reaches xl and assigns a score of 0 otherwise, which estimates the
fraction of photons that travel from xs to xl without a real event.
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Novák et al. [NSJ14] presented ratio tracking, which is unbiased
and estimates the joint probability that all particle interactions on
the path towards a light source (from xs to xl) have been virtual:

T̂ (xs← xl) =
k

∏
j=1

(
1−

µt(x j)

µt

)
(12)

where k is the index of the last event before reaching the light
source, i.e., dk ≤ ∥xs−xl∥ ≤ dk+1. Ratio tracking has a higher per-
iteration cost than the track length estimator, since rays are fully tra-
versed, but still outperforms it in most cases. Novák et al. [NSJ14]
suggested a combination of the two methods, by using ratio track-
ing along the ray until the transmittance T̂ falls under a certain
threshold (0.1%). The transmittance along the remainder of the ray
is then estimated using the track length estimator. In our work, we
use Delta tracking on view rays and ratio tracking with track length
estimation for negligible transmittance on the light ray.

3. Related Work

3.1. Particle Tracing

Different strategies have been investigated to reduce the memory
I/O overhead and to maximize parallelism during particle advec-
tion [ZY18]. For example, Chen and Shen [CS13] dynamically
loaded data bricks during flow map advection. Nouanesengsy et
al. [NLL∗12] parallelized the particle advection not only in space
but also in time, when tracing FTLE for multiple time spans. For
unstructured grids, efficient cell locators have been proposed to in-
terpolate velocities [GJ10, BRKE∗11]. Childs et al. [CPA∗10] em-
ployed and evaluated data pre-fetching to hide the data loading la-
tency. Lu et al. [LSP14] utilized caching and Camp et al. [CCC∗11]
suggested to use memory hierarchies. To improve scheduling, work
stealing [MCHG13] and dynamic load balancing strategies have
been investigated [ZGH∗18]. Lifeline based scheduling has re-
cently been demonstrated to be a successful option for distributed
sytems [BPNC19, BPC∗21]. A commonly cited application of par-
allel particle tracing is the computation of FTLE. Unlike the related
work above, we do not discretize FTLE onto a grid, but perform the
parallel particle tracing in a Monte Carlo rendering loop.

3.2. FTLE Computation

The finite-time Lyapunov exponent in Eq. (3) can be calculated
numerically in different ways. The most common approach is us-
ing finite differences [Hal02]. Rather than releasing nearby par-
ticles from regular grid points, local linearization of the flow
map via matrix exponentiation of the Jacobian leads to local-
ized FTLE [KPH∗09]. The different approaches have been com-
pared by Kuhn et al. [KRWT12] in a benchmark. Several ap-
proximation strategies have been proposed, including Catmull-
Rom interpolation [GGTH07], adaptive mesh refinement [SP07],
reconstruction from sparse samples [BT13], interpolation of flow
maps [COJ15], space-time construction of FTLE ridges [WRT18],
neural upsampling [JGG21, SLB22], and the neural representation
of flow maps [XLT23]. For interactive FTLE visualization, Barakat
et al. [BGT12] interleaved the direct volume rendering with view-
dependent particle tracing. Conti et al. [CRK12] investigated FTLE
computation on many-core architectures. FTLE computation on

discrete grids nevertheless entails discretizations and a direct vol-
ume rendering based on ray marching is biased [GKT16].

3.3. Monte Carlo FTLE

Our approach is based on the unbiased Monte Carlo FTLE render-
ing approach by Günther et al. [GKT16]. They estimated the FTLE
value by releasing particles from a numerical epsilon neighborhood
and mapped the FTLE scalar field via transfer functions to the ex-
inction µt(xs) := µt( f (xs)) and to color c(xs) := c( f (xs)), where
the color is the ratio between scattering and extinction coefficient,
i.e., c(xs) = µs(xs)/µt(xs). Inserting the free-flight sampling prob-
ability into Eq. (7) leads to the simple expression:

L(xc← ω⃗o)≈
1
N

N

∑
n=1

c(xs) ·ρ · T̂ (xs← xl) ·Le (13)

They used an isotropic phase function ρ = 1
4π

and the light trans-
mittance T̂ (xs← xl) was estimated with the track length estimator
in Eq. (11). The transmittance estimation in Eq. (10) is combined
with the outer Monte Carlo sum, i.e., one transmittance sample is
taken per iteration. Baeza Rojo et al. [BRGG20] replaced the track
length estimator with the ratio tracking estimator in Eq. (12) and in-
troduced approximations and gradient domain denoising. Note that
both approaches assume that the time-dependent vector field fits
into GPU memory, i.e., one iteration of Eq. (13) was evaluated in
a single compute shader. Each thread of the compute shader iter-
ates the full view ray, the light rays, and traces particles in the fluid
flow for each extinction sample along the way. When lifting the as-
sumption that all time steps must fit into memory, the evaluation of
Eq. (13) has to be split into multiple kernels. The demonstration of
how this can be achieved is the key contribution of our work.

4. Method

The goal of this paper is to extend the unbiased Monte Carlo FTLE
approach by Günther et al. [GKT16] to time-dependent vector
fields that do not fit at once into GPU memory. With our approach,
Monte Carlo FTLE visualizations can be computed for arbitrary
temporal domains within a bounded memory consumption.

4.1. Problem Statement

For each pixel, our method calculates the incoming radiance
L(xc← ω⃗o) at xc from direction ωo in Eq. (13) using Delta track-
ing on the view ray as in Eq. (9). Further, we follow Baeza Rojo et
al. [BRGG20] and use ratio tracking on the light ray as in Eq. (12):

L(xc← ω⃗o)≈
1
N

N

∑
n=1

c(xs) ·ρ ·
k

∏
j=1

(
1−

µt(x j)

µt

)
︸ ︷︷ ︸

T̂ (xs←xl)

·Le (14)

What makes Monte Carlo FTLE challenging is the dependence of
both the color c(x) := c( f (x)) and the extinction µt(x) := µt( f (x))
on the FTLE value f (x). Thus, the evaluation of every µt(x) and
c(x) requires the numerical integration of six particle trajectories
using Eq. (2) through the entire time-dependent vector field in order
to calculate FTLE using Eq. (3). If the vector field does not fit into
memory, a streaming approach is needed, as described next.
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Algorithm 1: LOOP

Data: iterations M, time steps T
Result: Radiance estimate for pixel L

1 photon, L← INITIALIZE() ;
2 for m← 1 to M do
3 particles← SEED(photon) ;
4 for t← 1 to T do
5 particles← ADVECT(particles) ;
6 end
7 photon, L← UPDATE(L, photon, particles) ;
8 end

Figure 2: Pipeline illustration. In the particle tracing, particles are
seeded around the photons (a), all particles are iteratively advected
in parallel (b and c), FTLE is estimated based on the separation and
is mapped to extinction and color for the photon update (d).

4.2. Overview

Update Loop. Our approach alternates between two phases,
namely particle tracing and photon tracing, and persists the states
of photons and particles in memory when switching between the
phases. The outer-most rendering loop is listed in Alg. 1 and an
overview is given in Fig. 2. When launching the program, the pho-
ton state is initialized by generating view rays that originate from
the camera sensor, i.e., from the pixel (INITIALIZE). The render-
ing loop then proceeds M times by first placing particles at the
current positions of photons (SEED in Fig. 2 a), iteratively tracing
those particles out-of-core by loading the vector field data into a
ring buffer (ADVECT in Fig. 2 b and c), and eventually calculating
FTLE, mapping it to color and extinction before updating the state
of photons (UPDATE in Fig. 2 d). During the update phase, we dis-
tinguish between photons that are currently traveling on the view
ray from those currently traveling on light rays. In the background,
the flow data is asynchronously streamed into a GPU ring buffer.

Design Decisions. Each photon may require a different number of
free-flight steps before it scatters or reaches the light source. Thus,
when parallelizing across the pixels, photons may be in different
stages of the ray tracing loop, as they individually generate a new
ray when they are finished. During particle tracing, however, all
particles exist in the same time step to reduce the number of vector
field time steps that need to be in memory at once. For each pixel
on the screen, the final output radiance L, the photon state, and six
particles are stored for computing the finite differences of the flow
map, which is listed in Alg. 2. The photon state contains the ray
origin and direction, the current free-flight distance, the joint prob-
ability of the light ray transmittance estimation, the FTLE value at
the scattering location, and the ray type (view ray or light ray). In
the following, we elaborate on the individual steps in Alg. 1.

Algorithm 2: State of a photon and a particle.

1 struct photon {
2 float origin[3] ; // ray origin xc or xs
3 float direction[3] ; // ray dir ω⃗o or ω⃗i
4 float dist ; // distance di or d j

5 float joint_prob ; // product T̂ (xs← xl)
6 float scatter_ftle ; // FTLE f (xs) at xs
7 int ray_type ; // 0=VIEW, 1=LIGHT

8 };
9 struct particle {

10 float position[3] ; // spatial position x
11 };

4.3. Initialization

For initialization in Alg. 3, a new photon is randomly placed on the
sensor pixel at xc and a view ray direction ω⃗o from xc to the cam-
era’s eye position is calculated. The view ray is oriented towards
the camera’s eye, since it models the transport of radiance towards
the viewer. All other variables are reset to zero, apart from the joint
probability, which later decays along the light ray from 1. The ray
type is a VIEW ray. The initial radiance is set to L = 0.

Algorithm 3: INITIALIZE

Result: photon state, radiance L
1 photon.origin← xc ;
2 photon.direction← ω⃗o ;
3 photon.dist← 0 ;
4 photon.joint_prob← 1 ;
5 photon.scatter_ftle← 0 ;
6 photon.ray_type← VIEW ;
7 L← 0 ;

4.4. Seeding

In order to advance a view ray or light ray, the exinction coefficient
µt( f (x)) is required, which requires the FTLE value. Thus, in a first
step, six particles are seeded in the immediate vicinity of the photon
position x with separation distance ε = 10−6, see Alg. 4.

x(0) = x+(ε,0,0)T, x(2) = x+(0,ε,0)T, x(4) = x+(0,0,ε)T,

x(1) = x− (ε,0,0)T, x(3) = x− (0,ε,0)T, x(5) = x− (0,0,ε)T

Algorithm 4: SEED

Data: photon state, sepration distance ε

Result: particles particle[6]
1 x← photon.position + photon.dist · photon.direction ;
2 particle[0].position← x+(ε,0,0);
3 . . .
4 particle[5].position← x− (0,0,ε);

4.5. Advection

Next, all particles are advected from time t0 to t0 + τ. Since not
all time steps fit into GPU memory, we instead maintain a ring
buffer. We load three consecutive time steps into memory (vi, ti),
(vi+1, ti+1), (vi+2, ti+2) and advect all particles using fourth-order

© 2023 The Authors.
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Runge-Kutta integration (RK4) from time step ti to ti+1 using
Eq. (2), which is listed in Alg. 5. The third time step is required,
since the RK4 integrator may access the time range [ti+1, ti+2].
Once the time step ti+1 is reached, time step ti is freed and the
next time step ti+3 is copied into the ring buffer into its position.
The advection continues until the end time t0 + τ is reached for all
particles. The advection is parallelized over particles.

The subsequent TRACING process has to wait while data is load-
ing from disc, which may cause a stall. Since the order of time steps
is deterministic, we pre-fetch the time step that will be requested
next into an intermediate GPU buffer while the tracing process is
still under way. The data loading was implemented using the Mi-
crosoft Direct Storage API (version 1.0.2 with a 4 MB block re-
quest size). This API allows to directly load files from disc into
GPU memory and is optimized for reading data from NVMe SSD
drives. In Section 5, we compare Direct Storage with the conven-
tional loading process of first reading a file into CPU memory and
subsequently uploading it to the GPU.

Algorithm 5: ADVECT

Data: particle, time steps (vi, ti), (vi+1, ti+1), (vi+2, ti+2)
Result: particle

1 particle.position← φ
ti+1−ti
ti (particle.position) ;

4.6. Photon Update

Once the particle advection finished, photons can be updated. The
update procedure depends on whether the ray is a view ray or light
ray, and on whether the particle exited the domain or not. A listing
is provided in Alg. 6 and the cases are explained in the following.

4.6.1. Ray has not Terminated

If the ray has not terminated yet, i.e., it has neither left the domain
nor has the light source been reached on a light ray, we can first
load the six advected particles, estimate the flow map gradient via
finite differences and compute the finite-time Lyapunov exponent
f (x) using Eq. (3). The FTLE value is then mapped via transfer
function to an extinction value µt(x). Russian roulette then decides
whether a virtual or real scattering event was found.

View Ray. If a real scattering event was found on the view ray,
then the photon remembers the FTLE value at the scattering point,
since this information will be needed later after the light ray has
finished in order to map the FTLE value at the scattering location
to a color. In addition, a light ray is initialized to follow towards the
light source, which means the ray type is set to LIGHT. The last
line of the kernel advances the photon forward towards the light
source using a Delta tracking step.

Light Ray. If a real scattering event was found on the light ray,
then the joint probability of the virtual interactions is inspected. If
the joint probability falls below a threshold, we follow Novák et
al. [NSJ14] and switch to a track length estimator to terminate the
ray early. Thus, a photon either stops its path when it sees a real
interaction or it continues its path in case of a virtual interaction.
If it stops, a new view ray is generated by sampling a new location
on the sensor pixel and thus, the ray type switches to VIEW. Fur-
ther, the counter of Monte Carlo radiance estimates is incremented,

Algorithm 6: UPDATE

Data: L, photon, particle[6], Le, ρ, µt
Result: L, photon

1 if ray not terminated then
2 x← photon.position + photon.dist · photon.direction ;
3 ∇φ← finite_difference(particle) ;

4 f (x)← 1
|τ| ln

(√
λmax(∇φT∇φ)

)
;

5 µt(x)← µt( f (x)) ;
6 is_real← µt(x)/µt ≥ ζ ;
7 if photon.ray_type = VIEW ∧ is_real then
8 photon.ray_type← LIGHT ;
9 photon.origin← x ;

10 photon.direction← ω⃗i ;
11 photon.dist← 0 ;
12 photon.scatter_ftle← f (x) ;
13 else if photon.ray_type = LIGHT then
14 if photon.joint_prob < 0.1% then
15 if is_real then
16 count← count +1 ;
17 photon.ray_type← VIEW ;
18 photon.origin← xc ;
19 photon.direction← ω⃗o ;
20 photon.dist← 0 ;
21 end
22 else
23 photon.joint_prob← photon.joint_prob

·(1−µt(x)/µt ) ;
24 end
25 end
26 else if ray terminated then
27 if photon.ray_type = VIEW then
28 L← L+Lbg ;
29 else if photon.ray_type = LIGHT then
30 T̂ (xs← xl)← photon.joint_prob ;
31 c(xs)← c(photon.scatter_ftle) ;
32 L← L+ c(xs) ·ρ · T̂ (xs← xl) ·Le ;
33 end
34 count← count +1 ;
35 photon.ray_type← VIEW ;
36 photon.origin← xc ;
37 photon.direction← ω⃗o ;
38 photon.dist← 0 ;
39 end
40 photon.dist← photon.dist − ln(1−ηi)

µt
;

which is stored in the alpha channel of radiance L. If the joint prob-
ability is not below the threshold, then the probability of a virtual
interaction is multiplied to the joint probability, following Eq. (12).

4.6.2. Ray has Terminated

View Ray. If the ray terminated on the view ray, i.e., when the pho-
ton left the domain of the vector field, then the background color
Lbg is added to the radiance estimate. Note that the Monte Carlo
iteration counter is incremented, as well. Afterwards, a new view
ray is generated and the first Delta tracking step is executed.
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Light Ray. Ray termination on the light ray means that the photon
reached the light source, meaning that we can calculate the light
path contribution using Eq. (14). Again, a new view ray is generated
and the first Delta tracking step follows.

4.7. Ray Batching

The most time-consuming part of our Monte Carlo rendering
pipeline is reading new files from disk, even with pre-fetching. By
tracing multiple rays per pixel at once, we can mitigate this issue.

5. Results

Next, we evaluate the approach in three time-dependent data sets.
The evaluation focuses on the performance improvements that arise
from the improved concurrent data loading and batching. The vi-
sual results that are displayed next to the performance plots are
denoised with Intel Open Image Denoise without auxiliary buffers.

Asteroid. The ASTEROID data set in Fig. 3 contains a numerical
simulation of an asteroid with a diameter of 250m that hits a deep
water ocean at an impact angle of 45◦ with no air burst. The data
set was subject of the IEEE Scientific Visualization Contest 2018
and was simulated using the multi-physics hydrodynamics solver
xRage [G∗08]. The considered time range spans 21 time steps with
1.43 GB each. Since only 3 time steps need to be read at once, the
memory requirement is reduced to 14% of the full data.

Exajet. The EXAJET data set (exajet-d12) in Fig. 4 is a
numerically-simulated fluid flow around a civilian transport air-
craft. The flow was simulated by Dassault Systèmes and is hosted
publicly on the Nasa portal. For a detailed description of the data
set, we refer to Wald et al. [WZU∗21]. The data set uses adaptive
mesh refinement (AMR), which follows an octree-type of subdivi-
sion. For our system, we resampled the data to a regular grid on its
finest resolution. In the considered time range, the flow consists of
93 time steps with 541 MB each. In this flow, the storage require-
ment reduces to 3.2% of the full data.

Half Cylinder The HALF CYLINDER flow in Fig. 5 contains a nu-
merical simulation of a viscous 3D fluid flow around a half cylin-
der at a Reynolds number of Re = 320 in dimensionless units. The
fluid flow was simulated with Gerris [Pop03] and was provided by
Baeza Rojo et al. [BRG20]. The vector field contains a classic von-
Kármán vortex street, in which FTLE separates the vortices. We
traced particles over a time period with 21 time steps with 140 MB
each. With this flow, we deliberately chose a smaller data set to see
how the batching and DirectStorage impact a data set that is less
bound by IO traffic. We can see that in combination with batching,
DirectStorage was less helpful than pre-fetching. Although the data
set would fit into memory in its entirety, the ring buffer reduced the
storage requirements to 14% of the full time series.

To assess the impact of pre-fetching (P), DirectStorage (D), and
ray batching (B), we performed an ablation study on all three data
sets. The measurements were performed on a desktop machine
with an AMD Ryzen 5 1600 Six-Core Processor (3.2GHz), with
16 GB RAM, 931 GB NVMe storage, and an NVIDIA GeForce

RTX 2070 SUPER graphics card, and the measurements are av-
eraged over multiple iterations (ASTEROID: 1,000, EXAJET: 200,
HALF CYLINDER: 1,000). The scenes were rendered at a screen
resolution of 704× 840 (ASTEROID), 655× 1022 (EXAJET), and
1450× 705 (HALF CYLINDER), respectively. Of interest is the
concurrency of the particle advection (PT) and the data loading
(DL). The remaining processing steps, such as the photon update
(UPDATE), take milliseconds and are negligible in comparison to
the other two, which are measured in seconds.

In Figures 3, 4, 5, the performance measurements are listed for
all cases, revealing the idle times that the optimizations aim to mini-
mize. Since batching traces multiple iterations concurrently, we let
the variants without batching trace the equivalent number of iter-
ations sequentially in order to make the results comparable. The
number of iterations to batch was chosen empirically by incremen-
tally increasing the number of concurrent iterations until the parti-
cle tracing time exceeds the data loading time. The best throughput
is obtained when both are equal. The performance plots show a
doubled loading time when a new particle tracing loop begins. This
is because the time-dependent vector fields are not periodic in time,
and thus two time steps are read to refill the ring buffer for the next
iteration. From the available 8 GB of video memory, 6 GB, 2.27
GB, and 0.59 GB, were used on our three data sets (ASTEROID,
EXAJET, HALF CYLINDER), respectively. The photon buffer al-
locates 136 bytes per pixel (including random seeds, accumulated
radiance, etc.), which results in 80.42 MB, 91.04 MB, and 139.03
MB, for the resolutions given above, respectively.

In all data sets, we observed that the Direct Storage API signifi-
cantly helped to reduce loading times by 73.67% on the ASTEROID,
81.09% on the EXAJET, and 40.95% on the HALF CYLINDER. Ad-
ditionally, we saw that the bottleneck of our rendering loop can gen-
erally be shifted to particle tracing by making use of pre-fetching
and batching. Pre-fetching reduces the data loading by 7.14% on
the ASTEROID, 25.26% on the EXAJET, and 12.69% on the HALF

CYLINDER. Batching hides the IO latency, giving an overall im-
provement of 41.56% on the ASTEROID, 84.89% on the EXAJET,
and 69.89% on the HALF CYLINDER. Throughout all examples,
the best performance was reached when enabling all optimizations.

6. Conclusions

In this paper, we extended the unbiased Monte Carlo rendering of
finite-time Lyapunov exponent fields [GKT16] to operate within
fixed memory bounds by interleaving a photon and particle tracing
phase. With the approach it becomes for the first time possible to
calculate Monte Carlo FTLE visualizations for time-dependent data
sets that do not fit into memory at once, such as the ASTEROID

sequence and the EXAJET simulation. In addition, we evaluated the
impact of pre-fetching, NVMe storage, and batching on the overall
performance. An orthogonal direction for further improvements is
the utilization of more recent tracking methods and transmittance
estimators that reduce the variance of the Monte Carlo integration
faster [GMH∗19]. Further, it would be imaginable to extend the
approach to support irregular grids. This would not only be useful
to reduce the memory footprint of adaptively-refined data sets, it
also opens the door to only streaming velocity fields for the spatial
regions of the data set that are currently populated with particles.

© 2023 The Authors.
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Figure 3: Backward FTLE in the ASTEROID data set for start time t0 = 2.474, integration duration τ = 1.484 and the linear extinction transfer function
bounds [0.07,0.09] with majorant extinction µt = 10 after 2,400 UPDATE iterations (400 iterations with batch size 6). The plots show the detailed timeline
(in seconds) of particle advection (PT) and data loading (DL) for the baseline method (Base), enabling pre-fetching (P), enabling DirectStorage (D),
and enabling batching (B). For comparability with batching, all plots show the completion of two UPDATE iterations.
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Figure 4: Backward FTLE in the EXAJET data set for start time t0 = 0.211, integration duration τ = 0.046 and the linear extinction transfer function
bounds [10,20] with majorant extinction µt = 4 after 18,000 UPDATE iterations (3,000 iterations with batch size 6). The plots show the detailed timeline
(in seconds) of particle advection (PT) and data loading (DL) for the baseline method (Base), enabling pre-fetching (P), enabling DirectStorage (D),
and enabling batching (B). For comparability with batching, all plots show the completion of six UPDATE iterations.
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Figure 5: Backward FTLE in the HALF CYLINDER data set for start time t0 = 10, integration duration τ = 2 and the linear extinction transfer function
bounds [0.36,1.4] with majorant extinction µt = 16 after 12,000 UPDATE iterations (2,000 iterations with batch size 6). The plots show the detailed
timeline (in seconds) of particle advection (PT) and data loading (DL) for the baseline method (Base), enabling pre-fetching (P), enabling DirectStorage
(D), and enabling batching (B). For comparability with batching, all plots show the completion of six UPDATE iterations.
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