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GRay: Ray Casting for Visualization and Interactive Data Exploration
of Gaussian Mixture Models
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Fig. 1. We present an exploration framework for Gaussian Mixture Models that combines different visualization techniques. The top
row shows raycasting-based visualizations that reveal cluster memberships (MIP view), spatial arrangement of Gaussians (hull view),
and new modes (DVR view). To manage complexity, the bottom row contains overview visualizations that allow for the comparison of
shapes (circle plot, line plot, PCA plot, and small multiples) and different choices of basis vectors (small multiples).

Abstract— The Gaussian mixture model (GMM) describes the distribution of random variables from several different populations.
GMMs have widespread applications in probability theory, statistics, machine learning for unsupervised cluster analysis and topic
modeling, as well as in deep learning pipelines. So far, few efforts have been made to explore the underlying point distribution in
combination with the GMMs, in particular when the data becomes high-dimensional and when the GMMs are composed of many
Gaussians. We present an analysis tool comprising various GPU-based visualization techniques to explore such complex GMMs.
To facilitate the exploration of high-dimensional data, we provide a novel navigation system to analyze the underlying data. Instead
of projecting the data to 2D, we utilize interactive 3D views to better support users in understanding the spatial arrangements of
the Gaussian distributions. The interactive system is composed of two parts: (1) raycasting-based views that visualize cluster
memberships, spatial arrangements, and support the discovery of new modes. (2) overview visualizations that enable the comparison
of Gaussians with each other, as well as small multiples of different choices of basis vectors. Users are supported in their exploration
with customization tools and smooth camera navigations. Our tool was developed and assessed by five domain experts, and its
usefulness was evaluated with 23 participants. To demonstrate the effectiveness, we identify interesting features in several data sets.

Index Terms—Scientific visualization, Gaussian mixture models, ray casting, volume visualization

1 INTRODUCTION

• K. Lawonn, P. Eulzer, M. Mitterreiter, J. Giesen are with Friedrich Schiller
University of Jena. E-mail: first name.last name@uni-jena.de.

• M. Meuschke is with Otto von Guericke University of Magdeburg. E-mail:
meuschke@isg.cs.uni-magdeburg.de

• T. Günther is with Friedrich-Alexander-Universität Erlangen-Nürnberg.
E-mail: tobias.guenther@fau.de

Manuscript received 31 Mar. 2022; accepted 16 Jul. 2022. Date of Publication
26 Sep. 2022; date of current version 26 Sep. 2022. For information on

High-dimensional data play an important role in many technical,
biomedical, and sociological applications. To bring order, experts
are interested in finding subgroups with similar characteristics. For
this purpose, clustering techniques are frequently used to group the
data entries in a meaningful way. However, a unique assignment of
a data point to exactly one cluster does not always make sense. It
may also be possible that it is in between two or even more clusters.
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For this reason, soft clustering techniques are of interest because they
allow multiple clusters to be assigned to one data point. One of the
early models, but still in the focus of current research, is the Gaussian
mixture model (GMM), which is nowadays used in various fields, from
acoustic signals anomaly detection [36, 56], emotion recognition [42],
image segmentation [11,52], image matching [25], background subtrac-
tion [55], visualization of volume data [24], to voice conversion [46],
and more. As a result, GMMs continue to be an active research topic in
machine learning, theory, and application communities.

Despite their popularity, few efforts have been made to explore and
understand them visually. GMMs consist of multiple high-dimensional
Gaussian distributions oriented in arbitrary directions. Although the
data points and their orientation already reveal interesting structures,
most representations show only the main axes by using simple visual-
izations, such as isolines in 2D. With growing number of dimensions
and growing number of Gaussians, occlusions occur, which hinder an
effective exploration of spatial arrangements. Therefore, showing the
distribution of the data points with their Gaussians in a customizable
subspace is necessary to reveal more complex relationships.

In this paper, we aim to fill this gap by presenting an understandable
framework for visualizing GMMs. The framework consists of two
parts: (1) Inspired by volume rendering, we apply three interactive
3D visualization techniques to GMMs, as the third dimension reduces
the amount of overlaps and occlusions: maximum intensity projection,
hull/isosurface rendering, and direct volume rendering. Each visual-
ization technique is advantageous for a specific analysis tasks, such
as locating the most-likely cluster membership, exploring the spatial
arrangement, and discovering new modes. (2) In addition, overview
visualizations are utilized to compare the shapes of Gaussians, and to
compare different basis axis choices, which are used for projection to
3D. Furthermore, we present several interaction options to explore the
high-dimensional data, including customizations of the basis vectors,
as well as automated camera navigations to help users form a mental
model of the spatial arrangements. The framework was developed and
guided by experts in the field of machine learning, visualization, and
human-computer interaction. The design was iteratively refined, and
the final program was evaluated with 23 participants, who are familiar
with these fields. In summary, we make the following contributions:

• We provide the, to the best of our knowledge, first 3D visual-
ization system that supports users in the exploration of high-
dimensional GMMs containing many Gaussians.

• We provide multiple helpful tools to assist users in the exploration,
including overview visualizations of shape and basis choices,
basis customizations, and smooth camera animations.

• We present an efficient GPU implementation that achieves real-
time performance.

Section 2 gives an overview of recent work in the field of high-
dimensional data visualization, followed by a formal introduction to
Gaussian mixture models. Section 3 formally describes the problem
by means of a data abstraction and a task abstraction, leading to a list
of analysis tasks. Section 4 discusses the design rationale, provides an
overview of the system and subsequently introduces all visualization
components. Section 5 elaborates on the efficient GPU implementa-
tion. Section 6 contains an evaluation comprising feedback from five
experts, questionnaire-based evaluations with 23 study participants, as
well as performance measurements. Section 7 reports findings made
with the tool in various data sets. Section 8 discusses the findings of
the evaluation and the application. Section 9 concludes the paper and
outlines potential avenues for future work.

2 RELATED WORK

The visualization of high-dimensional data has been a core topic of
visualization research for several decades. For an overview of visual-
izations that focus on high-dimensional data, we recommend the works
by Chab [9], Liu et al. [22], He et al. [16], and Nobre et al. [30]. In
addition, Leisch [20] presents an overview about commonly used 2D

plot-based visualizations to explore hierarchical clustering results. Ac-
cording to Liu et al., the visualization of multidimensional data can be
organized in three stages: Data Transformation, Visual Mapping, and
View Transformation. First, data are pre-processed by, e.g., dimension-
ality reduction, or subspace clustering. Relevant for our work is the
second stage, namely, Visual Mapping.

Classical visual mapping approaches are scatterplot matrices and
parallel coordinates [5, 17], which are both coordinate axis based, i.e.,
they use orthogonal coordinate projections. For high-dimensional data,
it can be especially challenging to identify interesting projections. This
problem has been addressed by Seo and Shneiderman [41] who provide
a rank-by-feature framework that suggests relevant dimensions to the
user. The user can start from the suggestions and examine the data
further using scatterplots. A related approach was presented by Sips
et al. [43] who introduce the concept of class consistency. Tatu et
al. [44] also employ an automatic analysis to identify structures in high-
dimensional data from which suggestions for further explorations can
be derived. Bertini et al. [6] compiled an overview of quality metrics
for guiding high-dimensional data exploration.

To avoid cluttered parallel coordinates plots of large or high-
dimensional data, Artero et al. [3] filter the data first to provide a
clearer view. Fanea et al. [13] introduced a different approach by de-
veloping parallel glyphs for high-dimensional data. Another approach
yielding visualizations for parallel coordinates plots was presented
by Yuan et al. [53]. Here, synthetic data points are integrated into a
parallel coordinates plot that encodes additional derived information.
Ferdosi and Roerdink [14] employed smart rules for the reordering of
dimensions in parallel coordinates plots and scatterplot matrices.

For enabling further exploration of multidimensional data, Elmqvist
et al. [12] introduced the scatterplot matrix together with navigation
facilities. Im et al. [18] introduced an extension of scatterplot ma-
trices, called generalized plot matrices, which consist of scatterplots,
heatmaps, and bar charts. Another approach to explore multidimen-
sional data, called Flexible Linked Axes, was introduced by Claessen
and Wijk [10]. Here, various visualizations are linked together to fa-
cilitate exploration. A technique to represent multidimensional data
by landscapes was introduced by Oesterling et al. [31–33]. Depending
on the density of the data points, a terrain is constructed such that the
height function corresponds to the local point density.

So far, we have discussed works that only make use of the natural
coordinates and not non-linear functions thereof. However, the natural
coordinates are often not the most effective representation of the data,
especially, when the data is close to a (non-)linear lower-dimensional
manifold. In this case, visual embeddings like multidimensional scal-
ing [19], Isomap [45], or t-SNE [48] can be more effective in revealing
interesting structures like clusters. Liu et al. [23] used subspaces and
2D linear projections. They implemented parallel coordinates plots
enhanced by brushing and linking facilities that enable the exploration
of clusters in the data. Besides identifying features for the user to inves-
tigate further, a few approaches try to cluster data directly in parallel
coordinates plots [34, 35, 40, 51, 54]. Rheingans and DesJardins [38]
used various projection techniques based on self-organizing maps for
visualizing predictive model quality. Migut and Worring [28] employed
a framework with mosaic plots and scatterplots for classifying models
for risk assessment. Garg et al. [15] visualized model learning based
on data segmentation and classification results, for which they used a
graph structure with labeled clusters and edges connecting them.

Using popular languages like Python or Matlab, GMMs can be vi-
sualized, but these visualizations are limited to either density plots or
isoline plots in the natural coordinates of the underlying data. Visualiz-
ing GMMs on certain sub-spaces, e.g., hyperplanes, requires additional
effort. We present, to the best of our knowledge, the first framework
for analyzing and visually exploring high-dimensional GMMs.

3 PROBLEM STATEMENT

With this paper, we introduce new visual encodings for the analysis of
high-dimensional Gaussian mixture models (GMMs) used for cluster
analysis. First, we briefly introduce GMMs and describe the resulting
problems and visualization goals that our approach should fulfill.
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Introduction to Gaussian Mixture Models. To set the notation,
we briefly introduce Gaussians and Gaussian mixture models. The
multivariate Gaussian distribution in IRk,k ∈ IN is defined as:

N (x; µ,Σ) =
1√

(2π)k det(Σ)
exp
(
−1

2
(x−µ)T

Σ
−1(x−µ)

)
, (1)

where Σ ∈ IRk×k is a positive-definite covariance matrix and x,µ ∈ IRk.
The vector µ is called the mean vector. A GMM is parametrized by
Gaussian distributions N (µi,Σi) (later referred to as Gaussians) and
corresponding positive weights φi ∈ IR>0, i ∈ {1,2, . . . ,N},N ∈ IN:

G (x;φi,µi,Σi) =
N

∑
i=1

φiNi(x; µi,Σi). (2)

Σi denotes the positive-definite covariance matrix for all i [7]. Note,
that positive-definite matrices have eigenvalues greater than zero. We
denote the greatest eigenvalue as λ1, i.e., λ1 ≥ λi, i ∈ {1,2, . . . ,k}.

Projection in View Box. Visualizing a single Gaussian, cf. Eq. (1),
or even a GMM, cf. Eq. (2), requires the projection of a high-
dimensional space to two-dimensional screen space. This can be
achieved by considering a three-dimensional subspace, which can
then be projected on the screen space. Therefore, we need to de-
fine such a subspace by three basis vectors in IRk. These basis vectors
b1,b2,b3 ∈ IRk are mutually orthogonal and of unit-length. These
vectors define the matrix B ∈ IRk×3:

B = (b1 b2 b3) (3)

which defines the axes of the view-box, which allows us to look into
the high-dimensional space. The view-box defines a three-dimensional
subspace such that each of its points p = (p1, p2, p3)

T ∈ IR3 relates to
a point in IRk by Bp ∈ IRk. With this, we can transform Eq. (1) and
restrict it to the view-box:

N (Bp; µ,Σ) =
1√

(2π)k det(Σ)
exp
(
−1

2
(Bp−µ)T

Σ
−1(Bp−µ)

)
.

(4)

The resulting distribution is still a Gaussian, but it is not normalized.

Data Abstraction and Problem Statement. Following Mun-
zner [29], we begin the visualization design with a data abstraction.
The original high-dimensional point cloud is formed via k quantitative
attributes that constitute the coordinates of a k-dimensional space. To
approximate those points, a Gaussian mixture model with N compo-
nents is given, containing the quantitative k-dimensional mean coordi-
nates µi of the Gaussians, their k× k covariance matrices Σi, and their
quantitative scalar-valued weight φi. An eigenanalysis of the covariance
matrix reveals the most relevant basis vectors, ranked by the eigenvalues.
In the following, we refer to the number of significant eigenvalues as m,
which comprise 90% of the data: m = max{m′ | ∑

m′

i=1 λi < 0.9∑
k
i=1 λi}

with eigenvalues λi being sorted in descending order. For a GMM, we
later report m for each Gaussian. Thus, the three relevant parameters
that characterize the scalability of a visualization are the domain di-
mensions k, the manifold dimensions m, and the number of Gaussians
N. When those parameters are small, standard methods are available:

• k is small. When the number of attributes is small, a scatterplot
matrix along with Gaussian level sets might suffice. Each scat-
terplot requires about 100× 100 pixels [29], limiting k by the
display resolution. Being inherently two-dimensional, complex
relationships among multiple principle axes are not visible, and
for multiple Gaussians overlaps are common, see Fig. 2 (left).

• m is small. In this case, the high-dimensional data can be reduced
via PCA to a lower dimensional subspace, which can then be
visualized with scatterplot matrices and Gaussian level sets. When
the number of dimensions increases, occlusions will hinder the
view in the PCA projection.

Fig. 2. Limitations of existing methods. Left: Scatterplot and Gaussian
level sets are inherently two-dimensional and exhibit overlapping Gaus-
sians. Right: Scatterplot matrix where no 2D projection along principal
axes exists that is able to show all four clusters without occlusions.

• N is small. With only few Gaussians, the risk of occlusion in 2D
visualizations is low. When the number of Gaussians increases,
occlusion becomes a significant problem. To demonstrate this
problem, Fig. 2 (right) shows a data set with four Gaussians, in
which there is always one Gaussian occluded in each view.

The aforementioned approaches do not scale well for larger problems.
Thus, in this paper, we present the first visualization approach that
enables the exploration of Gaussian mixtures for high k, m, and N.

Task Abstraction and Goals. To define the tasks that the visu-
alization system should address, we perform a task abstraction [29].
Based on contextual inquiries with three ML experts, who commonly
utilize and analyze Gaussian mixture models, we identified the follow-
ing challenges, which are confirmed as being relevant by the experts:

T1 Cluster Membership. Identify the most relevant cluster in the
domain, since GMMs support the projection of further unseen
data points for which the cluster assignment is important.

T2 Relative Spatial Arrangement. Judge proximity, overlap and
spatial arrangement of multiple Gaussians since spatial similari-
ties and groups are relevant for GMM parameter selection.

T3 Discover New Modes. Locate modes that are generated by a
particular choice of principal axes, since those derived features
allow experts to judge the utility of an axes combination.

T4 Manual Basis Definition. Explore not only permutations of prin-
cipal axes, but also linear combinations of them, since principal
axes alone are not creating an optimal separation.

T5 Point Distribution. Inspect how well Gaussians approximate the
underlying data distribution and how closely data points are to
the mean, since Gaussians need to fit points well enough to be a
surrogate for further analysis, which needs manual inspection.

T6 Attribution. For a given data point, find out which attributes are
responsible for a certain cluster membership, since this reveals
why a data point belongs to a specific cluster.

T7 Compare Shapes. Compare the shapes of multiple Gaussians,
since different sizes and elongations reveal structural information
about the underlying point clouds.

T8 Compare Bases. Compare the separability and spatial arrange-
ments of Gaussians for different choices of eigenvector bases,
since more than three principal components carry significant in-
formation, and the different options need to be explored.

In the following chapter, we present the visualization system, designed
to address the challenges.

4 VISUALIZATION OF GMMS

When aiming for scalability, a key observation is that common visu-
alization techniques that map into a 2D view, suffer from occlusions,
as demonstrated in Fig. 2. When staying in 2D, one approach would
be the utilization of distortion-oriented techniques [47]. Drawbacks of
distortion-oriented approaches are the inability to preserve distances,
the limited support of object constancy (i.e., the inability to form a men-
tal model of spatial relations during the non-linear motion of data points
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when moving the focus region), as well as the potential unawareness
of distortions taking place [29]. Instead, we decided for an interactive
3D visualization, which allows the user to rotate the view, effectively
exploring three principal axes at a time, instead of only two. Despite
the increased mental load of navigating 3D space, a 3D system is able
to communicate spatial relations, i.e., we can better understand the
relative positioning of multiple Gaussians in 3D. When designing a 3D
system, the following design questions arise:

• How do we decide which principal axis to map spatially?
Not only is it possible to perform a PCA on the entire point cloud
or on the Gaussians mean coordinates, which provides a global
view. Each individual Gaussian also has principal axes, from
which three axes can be chosen to form a local view concentrating
on one particular Gaussian. Our system provides an overview of
possible basis choices using small multiples, users may choose a
desired basis combination for inspection, and a custom basis can
be formed interactively via linear combinations.

• How do we support spatial understanding?
Choosing a three-dimensional view raises visualization chal-
lenges. To support the spatial scene understanding, shadow pro-
jections are added, as well as shading effects. Interactive camera
navigations are vital to resolve occlusions and to form a mental
model of the spatial relations via motion parallax, see the video
for examples. When transitioning between different basis vector
choices, a camera animation is provided to retain object constancy,
i.e., points can be visually tracked to the new view.

• How do we aggregate information from 3D into a 2D image?
We introduce three aggregation operators to fulfill the different
tasks. The methods are inspired from well-established raycasting-
based volume visualization techniques, including maximum inten-
sity projection (MIP), surface visualization of transparent Gaus-
sian ellipsoids utilizing edge enhancement, and cumulative direct
volume rendering to reveal new modes.

In the following, we present an overview of the visualization system.
Afterwards, the components are explained individually in more detail.

4.1 Overview
An overview of the system is shown in Fig. 1. We divide the individual
views into two groups:

Raycasting Views The raycasting-based views visualize Gaus-
sians and derived attributes in 3D, including cluster memberships using
maximum intensity projection (task T1), spatial arrangement of Gaus-
sians using hull surfaces (task T2), as well as new modes discovered
through cumulative direct volume rendering (task T3). Each view re-
quires the specification of a basis, which can be interactively composed
(task T4), underlying point distributions can be shown to judge how
well the Gaussians fit the data (task T5), and for each point, the reason
for a cluster assignment can be explored (task T6).

Shape and Basis Overviews To better compare the shape of
Gaussians, overviews and alternative spatial arrangements are intro-
duced that provide positional encodings with aligned axes (task T7).
To further support the exploration of different basis choices (task T8),
overviews of different options are provided using small multiples, and
a smooth camera animation is implemented to transition smoothly from
one basis choice to another.

4.2 Raycasting Views
We propose three raycasting-based visualizations that address different
tasks. All three views map the given data attributes onto the position
channels, since those are most accurate in terms of visual percep-
tion [29]. Derived attributes will be mapped to color, as explained in
the following. For this section, the camera position p ∈ IR3 is given
and the ray direction r ∈ IR3 is defined by the orthonormal basis of the
view-box B, cf. Eq. (3). A ray is cast through each pixel in the image.

Fig. 3. Raycasting-based visualizations: MIP, (five) Hulls, and DVR.

4.2.1 Maximum Intensity Projection (MIP)
Task T1 requires the user to identify for any point in the domain, which
cluster it belongs to, i.e., which Gaussian has the highest weighted value
according to Eq. (1). One option would be to employ 3D slicing, which
introduces a user parameter: the slice position, which is crucial for the
success of finding interesting structures. Instead, we utilize a maximum
intensity projection to locate the highest Gaussian value along a view
ray, making sure that maxima cannot be missed. For a given Gaussian
Ni with weight φi, the location of the maximum value along the ray at
τi ∈ IR fulfills the necessary condition ∂

∂τ
φiNi(B(p+ τir); µi,Σi) = 0

which has a closed-form solution:

∂

∂τ
Ni =−(rT BT

Σ
−1
i Bp+ τirT BT

Σ
−1
i Br− rT BT

Σ
−1
i µi)φiNi

⇒ τi =
−rT BT Σ

−1
i Bp+ rT BT Σ

−1
i µi

rT BT Σ
−1
i Br

=
rT BT Σ

−1
i (µi −Bp)

rT BT Σ
−1
i Br

(5)

The sufficient condition ∂ 2

∂τ2 N < 0 holds, confirming a maximum. We
compare the maximum values of each Gaussian with its corresponding
weight, cf. Eq. (2), along this ray using the calculated τi value, to obtain
the Gaussian with the largest value: î = argmaxi σiNi(B(p+ τir)).
Cluster membership î is a categorical attribute, which is mapped to
the identity channel hue. This yields a Voronoi-like visualization of
the GMM that subdivides space into one region for each Gaussian
such that the Gaussian has the highest probability in this region among
all components. Within each region, we indicate the direction of the
corresponding mean vector by the visual cue of stairs. The values of
the Gaussians are discretized, and stairs are drawn for the discrete level
values. The number of stairs is set by the user. We shaded the stairs to
provide a clue for the position of the mean vector, see Fig. 3 (left).

4.2.2 Hull Intersection
Task T2 requires the user to obtain a spatial understanding of the rela-
tive positioning among Gaussians. To this end, we visualize the Gaus-
sians in 3D by displaying enclosing hull isosurfaces with a silhouette-
enhancing transparency mapping. For a given Gaussian N , we com-
pute the closest intersection of the view ray with the hull isosurface for
isovalue h ∈ IR, resulting in the intersection distance τ ∈ IR (if there is
an intersection), i.e., φN (B(p+ τr),µ,Σ) = h, which gives:

(B(p+ τr)−µ)T
Σ

−1(B(p+ τr)−µ) = R (6)

with R =−2ln
(

h
√

(2π)k det(Σ)/φ

)
. Solving Eq. (6) for τ leads to a

quadratic root finding problem τ2a+ τb+ c = 0 with

a = rT BT
Σ

−1Br, b = 2(pT BT
Σ

−1Br−µ
T
Σ

−1Br),
c = R−pT BT

Σ
−1Bp−µ

T
Σ

−1
µ +2µ

T
Σ

−1Bp

and the closed-form roots τ1,2 =
−b±

√
b2−4ac

2a . For each Gaussian, we
identify the smallest positive solution for τ . The intersections are com-
puted for all Gaussians and are sorted from front-to-back for rendering.
To achieve an expressive compositing, we first alter the color of the
Gaussian by changing the v-value of the HSV color space. The outer-
most hull has a v-value of 0 and the innermost has the original v-value,
between, we interpolate. In addition, we add a silhouette enhancement
(1−nT v)4 using view normal n and view direction v. Each transparent
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(a) (b)

Fig. 4. (a): Defining the x-axis by setting s1
1 . . .s

5
1 with a slider. Here,

the first and fourth attribute have equal weight as these attributes are
strongly represented by this Gaussian (see bar charts). (b): For every
data point, we the contribution of every Gaussian is color-coded.

layer is weighted using 1− currentdepth/maxdepth, where currentdepth
means the current number of intersections. Therefore, with an increas-
ing number of intersections, the term vanishes gradually. The final
color is multiplied with 1− currentdepth/maxdepth, see Fig. 3 (middle).

4.2.3 Direct Volume Rendering

Task T3 requires the user to identify modes, i.e., local maxima of the
mixture distribution. Note that the modes are not necessarily aligned
with the mixture components [2], i.e., with the principal axes chosen
for B. Thus, the user needs to inspect combinations of principal axes
manually, which is done by interactively placing the camera, since the
ray direction is formed from a linear combination of the view principal
axes. Modes are discovered by visualizing accumulated values along a
ray, cf. Eq. (2). Similar to Rapp et al. [37], we integate a Gaussian along
the ray, here by integrating its projection:∫

∞

−∞

φN (B(p+ τr))dτ =
∫

∞

−∞

C · exp(−1
2
(τ2 a+ τ b))dτ

=C
√

π

2a
exp
(

b2

8a

)
erf
(

2aτ +b√
8a

)∣∣∣∣∣
∞

−∞

= 2C
√

π

2a
exp
(

b2

8a

)
(7)

with the scalars a = rT BT Σ−1Br, b = 2(pT BT Σ−1Br− µT Σ−1Br) and
C = φ√

(2π)k det(Σ)
exp(− 1

2 (p
T BT Σ−1Bp+ µT Σ−1µ −2µT Σ−1Bp)). The

error function erf(x) converges to ±1 for x →±∞, respectively. We
accumulate this integral for every Gaussian to obtain the final value,
which is a quantitative derived attribute that needs to be mapped to
a magnitude channel. We visualize the scalar using the Viridis col-
ormap, which is a continuous multi-hue color map to enhance the
visual contrast, equipped with a perceptually-linearized luminance en-
coding. For exploration purposes, we allow users to define custom
transfer functions. Furthermore, we add isolines, which are similar to
the stairs metaphor from the MIP paragraph. This enables identifying
the direction of increasing values, see Fig. 3 (right).

4.2.4 Basis Exploration

The three raycasting views depend on the choice of basis B. Task
T4 requires the user to freely explore different combinations of basis
vectors. Thus, we offer the possibility to assemble an orthonormal basis
via linear combination of the natural basis vectors, i.e., the attributes.
For each attribute, a slider allows setting a scaling factor used in the
linear combination, see Fig. 4(a). Next to the slider, a bar chart shows
how strongly this attribute contributes to each of the Gaussians, which
is measured by projecting its eigenvectors (scaled by their eigenvalues)
into the natural basis. The bar charts serve as scented widgets [50] to
support the user in the placement of meaningful slider positions. We
show three rows of bar charts and sliders, one for each custom basis
vector of the view box. Thus, the user can set scaling factors s j

1,s
j
2,s

j
3 ∈

IR with j ∈ {1, . . . ,k}, leading to the basis b̃1 = ∑
k
j=1 s j

1 e j, b̃2 =

∑
k
j=1 s j

2 e j, and b̃3 = ∑
k
j=1 s j

3 e j, where e j ∈ IRk are the eigenvectors
of the selected Gaussian’s covariance matrix inverse Σ−1. To ensure
orthonormality of b̃1, b̃2, b̃3, we apply the Gram-Schmidt process [21,
Eq.1] to obtain the orthonormal basis b1, b2, b3. Instead of setting the
coefficients of the eigenvectors, the user can also set the coefficients of
the standard Euclidean basis.

Fig. 5. Different overview visualizations using the MIP-based rendering:
circle plot, line plot, principal component plot, and small multiples.

4.2.5 Point Visualization and Analysis
The GMM approximates an underlying point distribution. Task T5
requires the visual inspection of those points. For this, we render
the points as spheres with the same color as the associated Gaussian.
Visualization of the mixed probabilities is also possible and activated
by default. Thus, we determine the likelihood to be assigned to the
individual Gaussian in [0,1] and map this to the angle [0,2π], see
Fig. 4(b) and later Fig. 10 for an example. In the case of MIP (Section
4.2.1) and cumulative direct volume rendering (Section 4.2.3), we draw
spheres as an overlay on top of the rendering. If the hull rendering
(Section 4.2.2) is chosen, we place the points at the correct 3D position.
Similar to the color compositing for the hull rendering, we multiply
the v-value of the HSV color model with 0.5− currentdepth/maxdepth
to improve spatial perception. This means, if the sphere lies in the
innermost hull it appears darker, because of the superposition of the
hulls. It appears brightest in the outermost hull. For further analysis, the
user can click on individual points to highlight the assigned Gaussian.
To highlight the Gaussian, the stairs or the hulls are drawn in red,
depending on which rendering technique is used, see later Fig. 10. An
information toolbox shows the coordinates of the selected data point
as well as the assigned Gaussian. Also, a histogram is shown that
indicates how many data points are assigned to the different Gaussians.
A drop-down menu allows the user to select a Gaussian, for which a
table shows the coordinates of assigned data points. Task T6 requires
closer inspection of the reasons why a data point is assigned to a certain
cluster. This can be revealed by an attribution experiment. In turn,
each data point component is replaced by the cluster average, revealing
how much the cluster assignment changes when varying the respective
component. The result is communicated in the information toolbox.

4.3 Shape and Basis Comparison
The previous chapter introduced the raycasting-based visualizations
that aggregate 3D information into 2D images. In the following, we
provide methods to support the comparison of Gaussians as well as
overview methods helping in the selection of a useful basis.

4.3.1 Shape Comparison
The raycasting-based views used the projected coordinates for the
spatial arrangement, which is needed to convey an impression of spatial
relationships (T2). However, when Gaussians are too close to each
other, overlap occurs, which makes it difficult to compare the shape of
Gaussians directly, which is required for task T7. For that reason, we
consider two alternative spatial arrangements, which we later evaluate
with users. The arrangements are free from occlusion to support the
direct comparison of Gaussian shapes, see Fig. 5 (left). For the circle
plot, we define a circle and uniformly place Gaussians such that their
mean vector coincides with the position on the circle. Afterward,
we define the view-box such that the eigenvector with the highest
eigenvalue aligns with the normal, and the eigenvector with the second
largest eigenvalue is oriented along the tangent of the circle. Again,
the eigenvector with the third-largest eigenvalue corresponds to the last
basis vector of the view-box. This yields Gaussians placed on the circle
with the eigenvectors aligned with the normal and tangent. Similarly,
the line plot places Gaussians on a line and orients the eigenvectors with
the largest and second-largest eigenvalue orthogonal and tangential to
the line. While the line plot requires a wider aspect ratio compared to
the circle plot, it aligns all Gaussians along a common horizontal line,
which benefits size comparisons [29].

In addition, we generate overview arrangements that derive the spa-
tial layout from the data, see Fig. 5 (right). For the principal component
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plot, we first apply a principal component analysis (PCA) of the mean
vectors. The three eigenvectors with the highest eigenvalues yield an or-
thonormal basis for the view-box, which provides a global view. Lastly,
every Gaussian can become the center of the view. Using small mul-
tiples we provide an overview of possible local views onto the spatial
arrangements relative to a selected Gaussian.

4.3.2 Basis Comparison
With the visualizations presented so far, we can easily compare the
Gaussians and analyze them. For each raycasting-based visualization,
however, a number of basis vector permutations are available to choose
the principal axis of the plots. Further, the choice of the eigenvectors
that are used for the alignment can be varied by the user. While fine
control is desirable for detailed inspections, an overview visualization
is required such that users do not have to probe each principal axis
permutation individually, which is task T8. Thus, we provide a small
multiples visualization that arranges multiple basis vector choices in a
matrix layout. This overview serves as preview for different principal
axis permutations that the user can choose from to further refine. The
views are sorted in descending order by the sum of the eigenvalues
of the three chosen principal axes, showing the most relevant views
first. To analyze and compare the eigenvalues directly, we provide an
overview showing the eigenvalues of every Gaussian with a histogram.
Single Gaussians can be disabled in the ray casting views.

4.3.3 Camera Animation
The previous section introduced methods to interactively pick principal
axis permutations for the definition of the view-box. When exploring
those different options, following for example task T4, a smooth transi-
tion from one view-box to another is desirable in order to retain object
constancy, i.e., to see how individual Gaussians and groups of Gaus-
sians transform and change their spatial relationship. For this reason,
we construct a smooth camera animation when transitioning from one
view-box to another. This requires the construction of an orthonor-
mal, time-dependent view-box B(t) = (b1(t) b2(t) b3(t)) ∈ IRk×3 that
defines a view-box for every t ∈ [0,1] during the animation.

Camera Position To construct a smooth path, we define a cubic
Bézier curve ci j(t) : IR → IRk connecting two Gaussians Ni,N j:

ci j(t) = (1− t)3p0 +3(1− t)2tp1 +3(1− t)t2p2 + t3p3, (8)

which is defined by four control points p0,p1,p2,p3 ∈ IRk

p0 = µi, p3 = µ j, (9)

p1 = p0 + cφi

√
λ i

1ei
1, p2 = p3 − cφ j

√
λ

j
1 e j

1, (10)

where λ i
1 is the largest eigenvalue of Σ

−1
i and ei

1 its corresponding
eigenvector (the sign is discussed later). Here, c = 1/maxi λ i

1 is a
scaling factor preventing the camera path to overshoot the scene. With
the choice of p0 and p3 we ensure the start and endpoint of a curve
to begin and end with a Gaussian. The points p1,p2 are chosen such
that we go from µi (µ j) in direction of ei

1 (e j
1), thus, the camera passes

through the largest extent of the Gaussian such that we see the two
largest extents on the x-axis and y-axis of the screen (and the third
largest extent as the z-axis). One problem remains, as the eigenvector is
uniquely defined except for the sign. Therefore, when connecting two
Gaussians, four possible paths exist from which we select the shortest
path [49].

Orthonormal View-Box During the camera position change, the
view-box B(t), that reveals the data in the three-dimensional sub-
space, needs to be changed, too. We define the starting view-box as
Bi j(0) := (si ei

1 ei
2 ei

3), where ei
1,e

i
2,e

i
3 are the eigenvectors of Σ

−1
i with

the corresponding three largest eigenvalues λ i
1 ≥ λ i

2 ≥ λ i
3. The sign si ∈

{−1,+1} is the correct sign of the eigenvector according to the transi-
tion ci j . Similarly, we define the end view-box as Bi j(1) := (s j e j

1 e j
2 e j

3).
The task is now to find a smooth transition Bi j(t) = (b1(t) b2(t) b3(t))

Fig. 6. The left view-box is transformed to the view-box on the right by
applying Bi j(t). The transformation ensures that it remains orthonormal.
The vectors c0, . . . ,ck represent the natural basis vectors (attributes).

between Bi j(0) and Bi j(1) such that bk(t) ·bl(t) = δ l
k where δ l

k is the
Kronecker delta for k, l ∈ {1,2,3}, t ∈ [0,1]. This means we need a
time-dependent view-box that remains on an orthonormal subspace ba-
sis. First, we linearize the view-box: Bi j(t) =Bi j(0) ·(1−t)+Bi j(1) ·t,
which ensures a transition. To ensure orthonormality, we apply the
Gram-Schmidt process [21, Eq.1]. Note, that while ei

2,e
i
3 (at t = 0)

are set, the choice of e j
2,e

j
3 (at t = 1) is not uniquely defined regarding

the sign. We choose the option with smallest enclosing angle, thus if
ei

2 ·e
j
2 < 0, we flip the orientation of e j

2. Similarly, e j
3 is oriented to have

smallest enclosing angle with ei
3. Optionally, but used by default, the

mean vector is replaced by µ → BBT (µ − c(t)) to project it onto the
3D subspace given by the view-box. If we would omit this projection,
the visualization would only reveal a sliced view, where the projected
data points may not be visually located around the mean of the Gaus-
sian. This may be correct in terms of the projection but may also be
confusing.

5 IMPLEMENTATION

In the following, we elaborate on the implementation details, where we
use OpenGL with C++ to achieve real-time performance, see Fig. 7.

Pre-processing In Eqs. (5), (6) and (7) several terms can be pre-
computed, including the following 4×4 matrix and the 4×1 vector:(

BT Σ
−1
i B 0

0T 1√
(2π)k det(Σi)

)
4×4

,

(
2BT Σ

−1
i (c−µi)

(c−µi)
T Σ

−1
i (c−µi)

)
4×1

which are precomputed for each Gaussian and sent to uniform buffers
on the GPU whenever view-box B or the camera position c change.
We further use shader storage buffers objects (SSBOs) to store all data
points on the GPU. In addition, we use four SSBOs to transfer the
orthonormal basis vectors of the view-box B and the current camera
position c to the GPU. To ensure real-time rendering in the case of
many data points, we perform calculations with compute shaders.

GPU Implementation To render the visualization, we use several
compute shaders. We start with a shader to determine the projected
positions of the data points. For every data point q, the shader is called
and we determine the 3D coordinates B(q− c) by iterating over the
entries of the SSBOs for view-box B and the camera position c. We
project the 3D coordinates from world space to normalized device
coordinates, where the projected result is stored in an image-space
texture. We use the red channel to store depth information, the green
channel to store the assigned Gaussian, and the blue channel to store
the index of the data point. Afterward, we call a compute shader twice
that generates spheres from the projected points. So far, the information
of the data point is only stored in one single pixel. Therefore, we use
another compute shader that expands the pixel in x- and y-direction
to cover a sphere. We compare the depth information in case spheres
overlap and store the sphere closest to the camera. Additionally, we
use the alpha channel of the texture to store the distance to the center
of the data point, which is useful for later shading.

Independent of the underlying rendering, we do all calculations
described in Sec. 4.2 in a computer shader. To generate a transfer
function for DVR, we use atomic counters to count the resulting value
of a pixel from the GMM, cf. Eq. (2). These values are stored in a
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Fig. 7. Pipeline of our tool. The pre-processing comprises data loading and the computation of eigenvector/eigenvalues. Then, for every point in time
the camera position c(t) and the view-box B(t) is determined to project the data points that are enlarged and visualized as spheres. Then, ray tracing
is performed and the result is shown. This is repeated for a different camera position and view-box.

texture to display the values by a histogram. To highlight Gaussians,
we store the index of the data point that the mouse position hovers over.
The compositing of the rendering and the data points is performed in
the subsequent compute shader.

6 EVALUATION

The evaluation is divided into three parts. First, we collected informal
feedback on our GMM exploration tool, which was used to extend our
framework to the current state. Second, we performed a qualitative
evaluation to assess the usefulness of our tool, and third, we measured
the performance of the algorithms on different data sets.

Informal Feedback The tool was developed in close collaboration
with three experts in machine learning (ML), M1, M2, M3, with a focus
on GMMs (10, 8, 3 years of experience) and two visualization experts,
V1, V2 (7, 3 years of work experience). For the informal feedback, we
used various revisions of the tool and discussed its current state. We
showed the tool to experts and introduced them to new features. The
experts then used the tool on their own to analyze and explore models
and data, while we recorded their comments and suggestions that we
used later to improve the tool.

The first prototype showed the MIP rendering without the stairs. V1
and M1 commented that it is hard to perceive where the mean vector
is. Therefore, we implemented the stairs. M1 asked for a feature to
identify different modes, i.e., regions with high probability in the GMM.
For this purpose, we integrated the cumulative DVR that accumulates
the values of the GMM. M2 also asked for a stairs metaphor on this
rendering style, which we added. V1 and V2 commented that it is hard
to distinguish between the individual Gaussians. Hence, we added the
histogram showing the eigenvalues as well as the circle and the line
plot. They also asked for a better visualization of the 3D subspace
and suggested using hulls, as they are similar to the stairs metaphor.
During visualization design, we experimented with various ray-tracing
techniques, e.g., refraction, which were considered visually pleasing
(M1), but distorted the data. Therefore, we kept the hull visualization.
M2 asked for means to navigate in high-dimensional space. Thus, we
integrated different view-boxes that are determined by an orthonormal
basis which can be set by the user. Furthermore, M3 asked for a
way to detect data points that lie in-between clusters. We, therefore,
integrated controls to filter data points. M3 asked for a method to view
the image data associated with a selected data point as well as its cluster
assignment distribution, for which we added an information box.

In a final session, we showed the tool again to experts. V1 and V2
were satisfied by the options to vary the visualizations. M1, M2, and M3
commented on the alternatives and stated that this tool allows analyzing
the data in a way that is tailored to their needs. M1 stated, “With this
framework, I can clearly explore and analyze high dimensional data
points and their GMMs.” M3 commented, “This tool is very extensive!”
He also asked us to provide him with the executable such that he can
use it for his research. Also, the smooth camera animation allows
getting better insights into the data. They consider this tool to be a clear
and novel contribution to the visual analysis of GMMs and would like
to have the source code publicly available.

Quantitative Evaluation To assess the usefulness of our tool, we
utilized an anonymous online questionnaire, see the additional material.
First, information about the participants’ background was gathered and

86,96%

73,91%

65,22%

47,83%

56,52%

78,26%

91,3%

73,91%

69,57%

82,61%

65,22%

17,39%

52,17%

78,26%

73,91%

82,61%

78,26%

8,7%

26,09%

34,78%

39,13%

39,13%

21,74%

8,7%

26,09%

21,74%

17,39%

34,78%

52,17%

30,43%

21,74%

26,09%

17,39%

21,74%

4,35%

4,35%

4,35%

8,7%

17,39%

8,7%

8,7%

8,7%

4,35%

4,35%

4,35%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Q17

Strongly agree Agree Neutral Disagree Strongly disagree

Fig. 8. The results of the evaluation are summarized. Here Q refers to
the individual questions, which could be answered with a five point Likert
scale from 1-strongly disagree to 5-strongly agree.

the tool was explained. In this study, 23 people participated, including
10 females and 13 males, ranging from 23 to 53 years. Further, we
asked if they are familiar with machine learning (ML), visualization
(Vis), human-computer interaction (HCI), or other fields. Multiple
selections were possible, where 17 stated they are familiar with ML,
19 with Vis, and 16 with HCI. Twelve participants have 1–10 years
of experience, seven between 10–19, and four between 19–28, with
average of 9.5 and a median of 8 years of experience. Afterwards, we
asked several questions about the tool and provided a five-point Likert
scale from 1-strongly disagree to 5-strongly agree, see Fig. 8 for a
summary. In the following, we analyze the study results.

First, it was confirmed that the stairs of the MIP visualization, cf.
Sec. 4.2.1, help to localize the mean (Q1). Second, the participants
stated that the visualization helps to understand where the probability
of a Gaussian is the highest (Q2) (fulfill task T1). The same questions
resulted in more mixed responses for the hull rendering (Q3, Q4), cf.
Sec. 4.2.2. One participant commented that during the exploration it is
easier to identify the regions of high probability, but from a screenshot
alone it is more difficult. In addition, the dashed lines of the hull
rendering, indicating the intersection of the innermost hulls, support
the spatial impression (Q5) (fulfill task T2).

Next, we evaluated the DVR rendering, cf. Sec. 4.2.3. The partici-
pants confirmed that it helps to identify new modes (Q6). Moreover, we
can conclude that the visualization supports the identification where the
probability is the highest (Q7) and that the isolines yield an indication
in which direction the probability increases (Q8). Finally, the majority
confirmed that changing the transfer function allows identifying new
emergent modes (Q9) (fulfill task T3).

Next, we evaluated the basis exploration and data point visualization,
cf. Sections 4.2.4 and 4.2.5. Setting the portions of the orthonormal ba-
sis gains insights into the data (Q10) and this allows exploring the data
easily (Q11) (fulfill task T4). The participants had no problem iden-
tifying data points with high probability that could belong to another
Gaussian (Q12). Moreover, the information box supports understand-
ing and helps analyzing why a data point has a higher probability of
being part of another cluster (Q13) (fulfill task T5, T6).

Finally, we determined which shape comparison layout suits the
exploration best, cf. Sec. 4.3.1. The circle layout was slightly preferred
over the line layout, where both provide an overview to compare the
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Table 1. Minimal, average, and maximal computation time in seconds
during camera navigation visiting each of k+1 Gaussians in dimension
k, number of points, for a screen resolution of 2048×2048 pixels.

k #Points Rendering min t(s) ∅ t(s) max t(s)

3 1,000 MIP/DVR 0.0014 0.0034 0.0084
Hull 0.0016 0.0037 0.0086

3 10,000 MIP/DVR 0.0013 0.0032 0.0071
Hull 0.0022 0.0036 0.0087

8 1,000 MIP/DVR 0.0019 0.0033 0.0076
Hull 0.0022 0.0051 0.0118

8 10,000 MIP/DVR 0.0015 0.0032 0.0074
Hull 0.0023 0.0052 0.0114

extents of the Gaussians (Q14, Q15) (fulfill task T7). More mixed
responses were given for the Principal Component Plot (PCP) (Q16).
For basis comparison, cf. Sec. 4.3.1, the small multiples visualization
(Q17) gives an overview of the GMM (fulfill task T8). Between the
principal component plot and the small multiples visualization, we
asked which layout the participants would prefer, where four preferred
the principal component plot, ten the small multiples, and nine both.

Performance To measure the performance, we used artificial data
sets. We track the computation time of every frame during a camera
animation. The computationally expensive part is the projection of the
data points onto the 3D subspace and the following upload to the GPU.
For the data, we generated a standard 3-simplex and an 8-simplex with
unit edge lengths. Then, we placed a Gaussian at every vertex, i.e., the
mean vector equals the vertex, and fixed the covariance matrix Σ = I as
the identity matrix. Finally, we combined the Gaussians into a GMM
using uniform weights and sampled random data points from the GMM.
Thus, we have N = 4 or N = 9 Gaussians, k = 3 or k = 8 dimensions,
and the data lives on a m = k− 1 dimensional subspace. Tab. 1 lists
performance results, for scenarios with 1,000 and 10,000 points and a
resolution of 20482 pixels. The experiments were conducted on an Intel
Core i9 @3.60GHz, 32 GB RAM, and an NVIDIA GeForce GTX 2080.
Changing the positions of the mean vectors or the variances has no
significant impact on the performance. Even with this comprehensive
data set, we achieve real-time performance.

7 FINDINGS

In this section, we describe insights that we obtained on two different
data sets. A third example can be found in the additional material.

Country Data Kaggle’s country data set [39] provides information
about 167 countries like the mortality of children under five, exports
and imports in terms of GDP, or health and income. We trained a GMM
on this data set using the EM algorithm [27] and the Akaike information
criterion (AIC) [1] to obtain the best number of components. The data
points were then clustered into three groups by assigning them to the
respective component with the highest conditional probability. Thus,
we have N = 3 Gaussians, k = 9 dimensions, and the data lives on a
m ≈ 6 dimensional subspace, as the three Gaussians capture 90% of the
information for 5, 6, and 7 eigenvalues, respectively. We first explored
the data using the small multiple overview to familiarize ourselves with
the data and the model, see Fig. 9 (left). One view shows a clear cluster
separation, i.e., colored points are within their respective colored GMM
region and not closer to another cluster. The view is selected and shown
in more detail in Fig. 9 (middle). The thereby chosen basis vectors are
a linear combination of the natural basis, i.e., the attributes of the data.
It is therefore interesting to learn which attributes of the underlying
data are combined to form the basis vectors. Looking at the basis
contribution sliders in Fig. 9 (right), reveals that the first row (x-axis)
is formed from export and import. Note that a medium slider position
corresponds to zero contribution. Similarly, the second row (y-axis)
is formed from child mortality and total fertility. The bar charts also
reveal why those basis vectors are separating the clusters very well. The
first cluster is strongly influenced by export/import (orange box) and
less influenced by child mortality and total fertility, which is reversed
for the third cluster (blue box). Inspection of the data points inside
the clusters revealed that the first cluster contains Qatar, Luxembourg,

Singapore, Ireland, and Brunei, which are among the richest countries
in the world. The poorest countries in the world, namely, Burundi,
Central African Republic, and the Democratic Republic of the Congo,
are all part of the third cluster.

Further, we could identify edge cases, where countries have a proba-
bility associated with multiple clusters. We observed that the United
Arab Emirates (UAE) belong to the second cluster with a probability
of ≈25% (see Fig. 10). The tool helped us to immediately and interac-
tively explore the underlying reasons. We found that the UAE have a
lower income and gdpp value than the average of this cluster. Setting
these values in an attribution experiment to the cluster mean would
significantly decrease the probability from 25% to 10% for a change in
income and to 9% for a change in gpdd.

Covid-19 Data The next data set contains several attributes for
101 countries, including information on the Covid-19 pandemic [4].
We trained a GMM by the EM algorithm and the AIC and then used
the GMM to cluster the data points. Here, we have N = 3 Gaussians,
k = 11 dimensions, and the data lives on a m ≈ 7 dimensional subspace,
as the three Gaussians capture 90% of the information for 6, 7, and 7
eigenvalues, respectively. We started our data exploration by looking
at the distributions of deaths due to Covid-19 per capita and the daily
tests, respectively. It revealed, for instance, that at the time of record
Belgium had the highest number of deaths per capita, see Fig. 11(a).

Using our tool, we could answer why the countries Denmark and
Luxembourg share a single cluster separate from other countries (see
Fig. 11(b)). When exploring the portion of eigenvectors w.r.t. the canon-
ical basis, we found that both countries have a low average temperature
and the most daily tests. This observation allowed us to identify an error
in the publicly available data set: the average temperature of Denmark
according to the data is −14◦C. Actually, it should be around 9◦C. We
contacted the data author who corrected the error.

From a mathematical point of view, a further interesting question
is the emergence of modes, i.e., the number of modes can be larger
than the number of mixture components. Emergent modes might not be
very pronounced, i.e., non-persistent in terms of persistent homology,
and are thus difficult to detect. During our analyses of the two data
sets, we found the tool helpful for this task. Fig. 12 shows a setup of
three Gaussian placed at the points of an equilateral triangle in three
dimensions. In the barycenter of the triangle, a new mode emerges that
we can identify by adjusting the transfer function for the GMM.

CIFAR-10 Data We refer to the additional material for another
example on a data set with N = 14 Gaussians, k = 246 dimensions, and
data living on a m ≈ 212 dimensional subspace.

8 DISCUSSION

Based on the problem statement in Sec. 3, we developed a GMM
exploration framework to address the stated problems.

To visualize the GMMs, we devised three raycasting-based visual-
ization techniques, cf. Sec. 4.2. The MIP visualization provides a clear
and descriptive metaphor for understanding the regions associated with
the Gaussians (task T1). A downside is the necessary exploration pro-
cess. Rotating the camera in 3D subspace can be difficult for beginners,
as some regions from a so-far unseen Gaussian may suddenly appear.
This can happen when the camera observes a Gaussian that locally
contributes a high probability to the mixture. The ray of the camera
hits fragments of high probability. In the next frame, this area can be
rotated, and another Gaussian appears, which has a larger probability
along this ray. To avoid this, the experts switched between MIP and
Hull rendering. Using Hull rendering the exploration in 3D is easy
to follow (task T2), but the higher likelihood of the Gaussians is not
visually encoded. The DVR method helps identify regions of high and
small probabilities (task T3). Adapting the transfer function allows
detecting the emergence of modes that do not directly correspond to
components of the mixture. This requires some exploration. However,
finding these modes analytically is a hard problem [8]. The informal
feedback reflects that the DVR is a valuable addition for better un-
derstanding the GMM. Defining an arbitrary axis combination for the
view-box is possible for all three raycasting-based views to explore
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Export & Import

Child mortality & total fertility

Small multiples of the first Gaussian (m = 5) For one multiple, we highlight attributes contributing to Gaussians with orange/cyan boxes.
Fig. 9. The small multiple view (left) on the country data set reveals basis vectors for which a cluster separation between the richest and the poorest
countries in the world is apparent (middle). The basis vector weights (right) show which data attributes are represented by the basis vectors.

Fig. 10. One data point, the United Arab Emirates (UAE), has a probability
over 25% that it belongs to the second cluster (1) due to low income and
low gdpp. The attribution experiment shows that the probability drops to
≈ 10% if income and gdpp were replaced by cluster means.

Daily tests

BelgiumBelgium

LuxembourgLuxembourg

Deaths

Deaths Daily tests

(a) (b)

Fig. 11. (a): Regarding the deaths due to or with Covid-19 divided by
the population and the daily tests, respectively, Belgium has the highest
number of deaths and Luxembourg has the highest number of daily tests.
(b): A closer look reveals that Denmark and Luxembourg belong to one
cluster due to an error in the data.

the data more freely, cf. Sec. 4.2.4 (task T4). The DVR visualization
mostly aids the exploration of the GMM itself and is less important
for a data points-driven exploration. Instead, exploring the data points
is better assisted by the MIP and the Hull rendering. Both techniques
are well-suited to understand the GMM by simultaneously identify-
ing the individual Gaussians and their border regions. We display the
data points to convey how well the GMMs approximate the data, cf.
Sec. 4.2.5 (task T5). The impact of an attribute on the assignment to a
cluster is revealed by an attribution experiment (task T6).

To further understand the Gaussians and to obtain an overview,
layouting techniques were presented, cf. Sec. 4.3. These techniques
allow for a shape comparison (task T7). The circle plot is more space-
saving than the line plot, while the line plot may exhaust the screen
space, requiring either panning or zooming out. In contrast to the circle
plot, the line plot allows comparing the eigenvalues. With its alignment,
it is easier to visually detect if the eigenvalues of a Gaussian are larger
or smaller than the eigenvalues of another Gaussian. We observed that
the experts preferred the circle plot, mostly due to the more succinct
representation. Nonetheless, they would not omit the line plot. The
PCA plot was barely used and not considered as particularly useful.
Mostly the Gaussians were projected very close to each other such that
no interesting features or outliers could be identified. To provide an
overview of different basis combinations, we provided a small multiple
visualization that provided useful insights of the data points (task T8).
Since it depends strongly on the scientific question of what is interesting

Fig. 12. Initial position (left) and a fourth mode (new maximum) has
emerged at the center after the transfer function was changed (right).

at all or what the experts want to find, we cannot guarantee to find all
useful arrangements. Nevertheless, the small multiples greatly improve
the exploration process and provide a better overview than the standard
display of selected camera positions.

A common problem in clustering that GMMs inherit is that the units
need careful scaling and normalization, e.g., by z-score normalization.

Our rendering implementations currently scale linearly in the num-
ber of Gaussians N, which could be accelerated with parallel prefix
sums. Currently, we use colors from the iWantHue website [26]. If a
large number of Gaussians are rendered and their colors become percep-
tually indistinguishable, the circle and line plots still allow examining
individual Gaussians. However, for the small multiples, user interaction
is needed to explore individual Gaussians, e.g., deactivating and high-
lighting. The domain dimensionality k can be arbitrarily high. What
matters is the dimensionality of the data manifold m, for which it is
difficult to specify a strict scalability limit since this is data-dependent.
The larger m, the less complete is a 3D projection. Our approach orders
subspaces by the magnitude of the eigenvalues, making sure that the
most informative subspaces are shown first.

9 CONCLUSION AND FUTURE WORK

We presented the first visualization tool to analyze and explore high-
dimensional GMMs. The system was developed iteratively in close
collaboration with ML and visualization experts. With our tool, users
gained new insights into GMMs and the underlying data, and were
able to generate new hypotheses, which was not possible before to this
extent. In the future, we will investigate other dimensionality reduc-
tion and spatial layouting techniques. The challenge is to align the
Gaussians such that they fit the projected data points and mean vectors.
If the mean vectors µi and the data points q j are projected in a 3D
subspace, i.e., µ̄i, q̄ j , we have to find a 3×3 covariance matrix Σ̄ such
that ∑

n
k=1(∥(q̄k − µ̄i)

T Σ̄−1(q̄k − µ̄i)∥−∥(qk −µi)
T Σ−1(qk −µi)∥)2 +

∑
N
k=1(∥(µ̄k− µ̄i)

T Σ−1(µ̄k− µ̄i)∥−∥(µk−µi)
T Σ−1(µk−µi)∥)2 is min-

imized. We consider this challenging task as future work.
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