Publications

GPU-accelerated Interactive Material Aging

Tobias Günther, Kai Rohmer and Thorsten Grosch

Vision, Modeling and Visualization (VMV), 2012

Abstract

A photorealistic appearance of a 3D scene is required in many applications today. Thereby, one vital aspect is the usage of realistic materials, for which a broad variety of reflectance models is available. When directly employing those models, surfaces always look new, which contrasts strongly the real objects surrounding us as they have undergone diverse kinds of aging processes. The literature already proposes a set of viable methods to simulate different aging phenomena, but all of them are computationally expensive and can thus only be computed off-line. Therefore, this paper presents the first interactive, GPU-accelerated method to simulate material aging in a given scene. Thereby, our approach allows artists to precisely control the course of the aging process. Our particle-based method is capable to reproduce the most common deterioration phenomena in a few seconds, including plausible dirt bleeding, flow effects, corrosion and patina.

Download



Video



BibTeX

@inproceedings{Guenther12VMV,
  author = {G{\"u}nther, Tobias and Rohmer, Kai and Grosch, Thorsten},
  title = {GPU-accelerated Interactive Material Aging},
  booktitle = {Vision, Modeling and Visualization (VMV)},
  pages = {63--70},
  year = {2012},
  publisher = {Eurographics},
  address = {Magdeburg, Germany},
  doi = {10.2312/PE/VMV/VMV12/063-070},
}