
Vision, Modeling, and Visualization (2012)
M. Goesele, T. Grosch, B. Preim, H. Theisel, and K. Toennies (Eds.)

GPU-accelerated Interactive Material Aging

Tobias Günther Kai Rohmer Thorsten Grosch

Computational Visualistics group, University of Magdeburg, Germany

Abstract

A photorealistic appearance of a 3D scene is required in many applications today. Thereby, one vital aspect is the
usage of realistic materials, for which a broad variety of reflectance models is available. When directly employing
those models, surfaces always look new, which contrasts strongly the real objects surrounding us as they have
undergone diverse kinds of aging processes. The literature already proposes a set of viable methods to simulate
different aging phenomena, but all of them are computationally expensive and can thus only be computed off-line.
Therefore, this paper presents the first interactive, GPU-accelerated method to simulate material aging in a given
scene. Thereby, our approach allows artists to precisely control the course of the aging process. Our particle-
based method is capable to reproduce the most common deterioration phenomena in a few seconds, including
plausible dirt bleeding, flow effects, corrosion and patina.

This is the authors preprint.
The definitive version of the paper is available at http://diglib.eg.org/EG/DL/PE/VMV/VMV12/063-070.pdf.

1. Introduction

The faithful reproduction of realistic appearances is one of
the ultimate goals computer graphics researchers have been
pursuing for decades. Thereby, a key aspect is the resem-
blance to natural phenomena, among those the weathering
and aging of materials over time. Content artists spend much
time meticulously facilitating the appearance of 3D objects
by editing their textures, whereby each inaccuracy can cause
implausibility and quickly break the immersion. For exam-
ple, a repositioned object undergoes different processes if its
weathering side changed or is suddenly blocked, which can
also render the content artist’s work void if a scene designer
decides to rearrange the objects. Not only to favor plausi-
bility of effects caused by interacting objects and to lower
production costs, fast simulations of weathering phenomena
are vitally needed. Furthermore, robust simulations can con-
tribute to ever-changing environments, thereby taking virtual
reality to a new experience. Several methods exist to model
the simulation of the chemical, biological and mechanical
processes involved here, but run in the order of minutes or
hours, thus are far from reaching interactive frame rates, yet.

In this paper, we demonstrate the – to the best of our
knowledge – first simulation of aging processes at interac-
tive frame rates, by harnessing the processing power of mod-

ern GPU architectures. Thereby, our solution enables artists
to steer and design the aging process to eventually generate
textures encoding surface properties, e.g. precipitate, normal
and height. These are universally applicable for content cre-
ation, e.g. in games or production rendering. We do not aim
for physical, chemical or biological correctness – instead we
show how simple rules and an intuitive user interface can
be used to quickly simulate many of the most common ag-
ing effects. We exploit the latest GPU features to display the
visibly aging scene in an interactive process, whereas an ex-
tensively weathered look can be attained in a few seconds.
Fig. 1 shows two aged scenes simulated interactively.

Figure 1: Interactively aged Chest and Otto scene, exported
and rendered in a DCC tool.

c⃝ The Eurographics Association 2012.



Tobias Günther, Kai Rohmer & Thorsten Grosch / GPU-accelerated Interactive Material Aging

2. Previous Work

Material aging processes can be categorized into chemi-
cal, mechanical, and biological processes [MG08]. Chemical
processes include the temporal change of metal, e.g. corro-
sion introducing rust [MDG01], or the formation of a patina
layer on copper [DH96]. Mechanical processes alter the
shape of the object, including the deformation due to cracks
[HTK98, HTK00, GC01], peeling [WNH97, PPD02], and
man-made influences like scratches [BPMG04] and impacts
[PPD01] on the surface. Examples of biological processes
are organic lichen growth [DGA04], mould and decay as
well as wrinkles in fruits [KRB11]. Many aging processes,
like erosion and weathered stone [DEJ∗99], can be charac-
terized as a combination of multiple processes [MG08]. As a
simulation type, statistical methods can be used [WTL∗06],
as well as captured photographs over time [GTR∗06], or par-
ticle simulations. Particles are especially expedient to de-
scribe the flow of dirt along the surface [DPH96]. A more
general particle-based approach was presented by Chen et
al. [CXW∗05], allowing the simulation of a wider range
of aging phenomena, including dirt bleeding and erosion.
Tools like BRDF-Shop [CPK06] can be used to design user-
defined materials. In addition, 3D-painting [HH90] allows a
direct manipulation of the color on the 3D-surface. However,
a direct design of the aging process is not yet possible.

3. Overview

We simulate the weathering effects with the help of gamma-
tons introduced by Chen et al. [CXW∗05], as they allow for
effects resulting from interactions between objects, e.g. the
dripping of patina or dirt, as shown in Fig. 2. In its essence,
the idea is to emit particles from distant sources and to shoot
them toward the objects. When a particle – called gammaton
– hits a surface, an interaction is issued by applying rules de-
pending on gammaton and surface properties. Thereby, the
particle can deposit or take away material. Subsequently, the
gammaton is either reflected, floats on the surface or is ab-
sorbed (see Fig. 3).

In our approach, all material, surface and normalization
data is maintained in a texture atlas, which we refer to as ma-

Figure 2: Patina and dirt being transported by gammatons.

(a) Bounce event. (b) Float event. (c) Absorption event.

Figure 3: Depiction of the three collision responses.

terial atlas (see Fig. 4). Originally, Chen et al. [CXW∗05]
proposed a surfel representation embedded in a k-d tree
instead. But, not only do textures better fit into content
pipelines, localization of deposited material by a texture
lookup is naturally faster than a range query in a k-d tree.

The pipeline stages of the simulation are illustrated in
Fig. 5 and are outlined in the following. The first action in
the main loop is the invocation of the simulation step, which
includes the emission of new gammatons, the iterative trac-
ing of already existing gammatons and the detection of colli-
sions with the surface geometry (elaborated in Section 4.1).
In the next two stages, the surface update and the gammaton
update, the material transport between the gammatons and
the hit surfaces is issued (more detailed in Section 4.2). Fur-
thermore, we avail Russian Roulette to determine the sub-
sequent behavior of the particles (e.g. float, bounce or ab-
sorb) and specify their velocity for the next iteration. In the
following stage, the aging process, we treat the interaction
of materials over time, e.g. rusting in the presence of water
and metal. Therefore, we apply a set of rules to the mate-
rials on the surface, further explained in Section 4.3. Based
on the amount of each material stored in the material at-
las (Section 4.4) we estimate new surface parameters in the
composition stage (Section 4.5). Here, texture maps for the
aged color, specular amount, normal and height are gener-
ated. These maps are used for the preview rendering (see
Section 6) and can also be exported (alongside with the ma-
terial atlas) for external use in game engines, DCC tools or
serve as input to other rendering applications. Eventually, the
pipeline starts anew with the next simulation step.

4. Simulation

The simulation involves the tracing of gammatons in the
scene, as well as the interaction with the materials encoun-

Figure 4: The material atlas contains all surface informa-
tion. In this image a subset of the atlas textures is shown.
From left to right: original colors, amount of the respective
material types (two images), texel-to-world scale and sur-
face normals.

c⃝ The Eurographics Association 2012.



Tobias Günther, Kai Rohmer & Thorsten Grosch / GPU-accelerated Interactive Material Aging

Figure 5: Illustration of the simulation pipeline.

tered on surfaces. We draw on Nvidia’s GPU ray tracing API
OptiX [PBD∗10] for the tracing of gammatons and conduct
the material updates and collision responses on the Direct3D
side. For consistency, we process all material-related steps
on the Direct3D side alone.

4.1. Tracing of Gammatons

Gammatons are launched in OptiX by so called entry pro-
grams. We launch the same entry program subsequently
for each gammaton source, using parameters to define cus-
tomized behavior, e.g. position, direction, emission speed
and distribution. For the parallel processing of all gamma-
tons later on, we assign each source an exclusive range of
memory of a single gammaton stream shared by all sources.
Before starting the gammaton tracing, all gammatons – asso-
ciated to the source that launches – are either alive or ready
to be spawned anew. A gammaton is considered alive if it is
either still in mid-air or received a new direction in response
to a collision. Alive gammatons are launched in their given
direction from their last known position. All other gamma-
tons either came to a stop on a nearly horizontal plane or
left the scene and can thus respawn. By using OptiX, we
trace the gammaton trajectories as a sequence of linear steps,
each reporting a miss or hit. Misses are handled by adding
gravity, followed by a recursive launch until the maximum
recurrence depth is reached. Until then, a gammaton hits a
surface, leaves the scene or remains in mid-air to be contin-
ued in the next simulation iteration. If a surface got hit, the
gravity is applied accordingly to the traveled distance, only
acting tangentially in case the gammaton is in the floating
state. For gammatons in mid-air the current position is stored
and for alive gammatons that hit a surface, a numerical off-
set ε in normal direction is added to the stored position. This
offset will affect the speed of floating particles, as we will
explain later on. When the tracing has finished, gammatons
are in one of four possible states. They can still be mid-air,
have hit a surface, have left the scene or be extinguished due
to close-to-zero speed. Only gammatons that hit a surface
pick up material, as described in Section 4.2, and respond
to collisions by executing Russian Roulette on the events
bouncing, floating and absorbing (see Fig. 3), according to
their associated probabilities. A bounce is a reflection on the
tangent plane given by the material-dependent estimated sur-

face normal (see Section 4.5), randomized by a Phong lobe
sampling, see Fig. 6. In order to avoid penetration of objects,
i.e. shooting below the tangential plane of the geometric nor-
mal, rejection sampling is carried out. Floating particles are
handled equally with the addition that the resulting direction
is projected back to the tangential plane. Since we applied
a numerical offset ε to the gammaton’s position, a floating
gammaton virtually hovers above the surface. We pull its di-
rection back in the negated normal direction by the amount
h to let the next ray aim back at the surface as shown in
Fig. 7. Both the numerical offset ε as well as h steer the speed
of floating gammatons. Their ability to grab for overhangs,
when flowing bottom up, additionally depends on the range
of the next ray, which is extended to accommodate the nu-
merical offset from the surface. If the ray intersects, the gam-
maton reports a hit as usual; otherwise its direction is set to
the gravity direction, letting the gammaton fall down. More-
over, the artist can decide whether gammatons slow down
depending on their incoming angle (letting the resulting ve-
locity only act tangentially), as it would be physically cor-
rect. In order to speed up the distribution it might be turned
off. Aside from this, both the bouncing and floating gam-
matons are slowed down by a specific rate, approximating
friction.

4.2. Material Transport

One of the fundamental mechanics of our approach is the
transfer of material induced by flowing and bouncing gam-
matons. Whenever a gammaton hits the surface it picks up
and deposits a certain amount of material. The initial mate-
rial composition on the surfaces is assigned by material pre-
sets, e.g. stating that the surface on the grass mesh consists
of 75% dirt and 25% organic. The quantity of the material

Figure 6: For bounce events the reflected direction is ran-
domized by a Phong lobe sampling. Arrows depict the in-
coming direction (•) and possible outgoing directions (•).

c⃝ The Eurographics Association 2012.



Tobias Günther, Kai Rohmer & Thorsten Grosch / GPU-accelerated Interactive Material Aging

v
εn

(a) Apply a numerical offset ε in nor-
mal direction to the hit position.

v

vt

εn

(b) Projecting the velocity v (•) into
the tangential plane gives vt.

−hn εn

vt

w

(c) Pulling of vt in negated normal di-
rection by the amount of h yields a new
direction w (•).

(d) The visible course
(•) of a gammaton float-
ing around an overhang.

Figure 7: Sequence of steps for handling a floating event.

transferred depends on the amount of material lying on the
surface and being carried by the gammatons. To incorporate
the varying erosion speeds of the different material types, we
introduced factors ci to control the transferred amount for
each material type i, e.g. to accommodate that water is more
volatile than stone. The rates are defined once prior to the
simulation and can be reused in other scenes. The only de-
gree of freedom during the simulation is the ratio r between
the amount of material carried away from the surface and
added to the gammaton (and vice versa). Naturally, the over-
all material is preserved if this ratio is 1:1. Though to grant
artists more freedom, we expose this parameter to the user,
thereby allowing the artist not only to speed up the aging
process, but also to reverse it, i.e. when gammatons pick up
more material than they deposit, they ultimately wash away
the material, see Fig. 8. With mi(x, t) being the material on
a surface at the texture atlas location x at time t and γi(x, t)
being the material carried by a gammaton that hit at the tex-
ture atlas location x at time t, the following two linear ODEs
can be deduced to describe the material transport. Note that

Figure 8: Picking up more material than despositing allows
for washing away material (left: before, right:after).

i enumerates the material types (water, dirt, ...).

∀i :
dγi(x, t)

dt
= (mi(x, t)(1− r)− γi(x, t)r) ci

∀i :
dmi(x, t)

dt
= (−mi(x, t)(1− r)+ γi(x, t)r) ci

Thereby, a ratio r of zero means that material is only picked
up and nothing is dropped, whereas a ratio of one means the
opposite.

The material transport is invoked in pixel shaders by splat-
ting small quads into the material atlas at the collision po-
sitions. The material deposited by the gammaton is added,
whereas the material picked up is subtracted. The material,
carried by the respective gammaton itself, is altered accord-
ingly in the gammaton update stage, for which geometry
shaders and transform feedback are utilized. Here, deposited
material is subtracted and incidentally, picked up material is
added to the gammatons.

An issue to deal with is the varying scale of the atlas tex-
tures. To increase the detail, usually more amount of texture
area is spent on the most important objects. The remaining
objects share the residual space, yielding a varying area an
atlas texel covers in world space. As we issue material trans-
fer whenever a gammaton hits a surface, the splat size of the
material footprint must be adapted accordingly to the world
space scale of the texel. Thus, we keep a normalizing, pre-
computed texel-to-world scale in the material atlas.

4.3. Aging Rules

We directed our focus on the design of a flexible rule sys-
tem used to guide the aging processes. To facilitate a vari-
ety of aging phenomena in a broad scope of multifaceted
scenes we propose an asset-like system to define – and save
– customized rules, as inspired by material libraries nowa-
days found in almost every DCC program. Such a system
can be implemented elegantly and efficiently by using the
dynamic shader linkage. This concept has been long known
in Nvidia’s shader language CG, thus allows targeting older
hardware. Most recently, it found its way into the graphics
APIs DirectX 11 and OpenGL 4.0 – in the latter it is known
as subroutine functions.

We model a rule as an implementation of an interface
defining a method that alters a given material property con-
figuration. This way, we allow for potentially complex and
sophisticated rules. In the following, we explain the three
rules used throughout the paper. For each rule, we define an
α-parameter that scales the amount of material generated or
removed.

Rust. The first rule turns metal into rust in the presence of
water:

dmrust(x, t)
dt

= min(mwater(x, t),mmetal(x, t))αrust .

c⃝ The Eurographics Association 2012.



Tobias Günther, Kai Rohmer & Thorsten Grosch / GPU-accelerated Interactive Material Aging

Decay. The second rule is used to weather wood by produc-
ing organic material and dirt:

dmorganic(x, t)
dt

= min(mwater(x, t),mwood(x, t))αorganic

dmdirt(x, t)
dt

= min(mwater(x, t),mwood(x, t))αdirt .

Evaporation. The last rule evaporates water over time:

dmwater(x, t)
dt

=−αwater.

4.4. Data Formats

In the following section, we take a closer look on the
data structures involved in the implementation. Of partic-
ular interest are the formats used to store the materials
on the surface and at the gammatons. For the information
on the surfaces we use the material atlas, thus beforehand
a parameterization is required, which we obtained semi-
automatically using standard DCC tools. The material at-
las contains colors + specular coefficient (RGBA8), face
normals (RGB16F), face tangents (RGB16F), shading nor-
mals (RGB16F), materials (ping-pong of 2× RGBA8), orig-
inal materials (2× RGBA8) and a texture-to-world scale
(RG16F). The memory consumption is a non-negligible is-
sue, especially due to the high bandwidth workload, thus
we reduced the materials to 256 discrete steps each, using
8 materials in total. To attain more granularity on the lowly
discretized materials, we invoke the aging rules with a cus-
tomizable probability. As opposed to our probabilistic ap-
proach, it suggests itself to invoke a rule every n frames,
which however is not viable as it may yield discernible, pe-
riodic popping artifacts in the rendered image.

The 8 material slots can be assigned to certain materials,
as they are required in the particular scene. Throughout the
paper we needed 7 slots for water, dirt, metal, wood, organic,
rust and stone. Output of the simulation are the composed
textures, containing the aged color (RGB8), normal (RGB8)
height (R8) and specularity (R8). Each gammaton stores its
position (float3), the velocity (float3), the carried material
(uint2), the texture coordinates (float2) of the surface it last
hit, its state (uint) – as explained in Section 4.1 – and a seed
for the linear congruence random number generator (uint).

4.5. Composition

The last stage of the pipeline is the composition, which is
responsible for the estimation of the new surface proper-
ties, based on the current amount of the different material
types. More specifically, we estimate the aged diffuse color,
specular values, tangent space normals and a height map for
displacement mapping (see Fig. 9(a)). Note that the diffuse
color and specular values are used for the Phong reflection
model of the preview renderer and may directly be used in
the final renderer as diffuse and specular maps as in Fig. 1.

Our composition does not place a limit for photo-realistic
content production, since sequent DCC tools may also im-
port the material atlas to compose input for more complex
reflection models, thereby still having full flexibility.

The diffuse color of the aged material is estimated by
computing for each material type the difference between the
current material in the atlas and the original material at the
regarded position. This difference directly correlates with
the influence of the material type on the resulting color. The
color values s, representing the material types, are fetched
from textures referenced in the aforementioned material pre-
sets (see Fig. 9(b)). To grant possibilities for adjusting the
result during or after the simulation, two degrees of free-
dom are introduced per material type: one for controlling the
base strength b and one for introducing a random variation
v – again both pre-defined by presets. This enables the artist
to attain various appearances e.g. a homogenous patina of
copper or noisy rust stains on iron surfaces. Let ξ denote a
uniformly destributed random number. By estimating a color
cdeposit for the material deposited on the surface:

cdeposit = ∑
i

max(0,mi(x, t)−mi(x,0)) · si · (bi + vi ·ξi)

the resulting diffuse color is formally defined as

cdiffuse = (1−∑
i
(bi + vi ·ξi))corg +∑

i
(bi + vi ·ξi)cdeposit.

The weight ∑(bi + vi · ξi) blends between the original color
corg and the deposited color cdeposit. The specular values
are estimated similarly, leaving out the color textures. Aside

(a) The composed tex-
tures aged color, normal,
height and specularity.

(b) Textures associated to the mate-
rials dirt, iron, wood, grass, rust and
stone.

(c) Two differently composed aged chests.

Figure 9: Texture composition in the Chest scene.

c⃝ The Eurographics Association 2012.



Tobias Günther, Kai Rohmer & Thorsten Grosch / GPU-accelerated Interactive Material Aging

from the amounts of the different material types, one byte is
reserved to store the overall material height, which is initial-
ized with values from input height maps. In the composition
stage of the pipeline, the height is influenced by the amount
of material on the surface, e.g by rust and organic, resulting
in an output height map. Finally, we use the height map to
calculate tangent space normals.

5. User Interaction

The following section outlines the typical user interactions
undertaken during usage of our program. For convenience,
our system allows the user to rearrange both the scene ob-
jects (move, rotate and scale) and the gammaton emitters.
Inspired from user interface concepts often found in sculpt-
ing tools, we additionally allow the artist to paint on sur-
faces by placing the emitter at the selected location with an
offset in normal direction, adjustable by scrolling the mouse
wheel. Furthermore, the variance from the normal direction
(concentrated beam vs. drizzle) and the size of the emitter
can be adjusted.

To decrease the number of user parameters, we steer the
aforementioned Russian Roulette probabilities used to deter-
mine the behavior (float, bounce or absorb), and the decel-
eration rate of the gammatons with one slider, as visualized
in Fig. 10. On one extreme all gammatons bounce without
loss of speed. Moving the slider up to 1/3 continuously de-
celerates the gammatons. Going from 1/3 to 2/3 tilts the ratio
to solely floating behavior, whereas the last third steers the
deceleration of the floating gammatons. The curves for the
deceleration rates were chosen reasonably (other choices are
imaginable) and are – for simplicity on the user’s end – as-
sumed to be constant for the entire scene. It is a possible

0 11

3

2

3

0.3

0.6

0.7

1

0

slider

value

(a) Float only. (b) Bounce and float. (c) Bounce only.

Figure 10: A single slider steers the rate of deceleration
for bouncing (•) and floating (•), and the probabilities of
bouncing (•) and floating (•). The figures (a) to (c) show
several choices for the bounce behavior.

future work to investigate how much artists steer against the
curves when the rates are derived from material properties.
After adjusting the scene-dependent numerical parameters,
the movement simulation can be steered by this single slider.
In conjunction with the ratio between depositing and picking
up of material, the course of the simulation is mainly steered
by only two independent parameters. After (or even during)
the simulation, post-controls can be used to adjust the over-
all strength of the weathering for each type of effect (see
Fig. 9(c)), which modifies the blending weights, applied in
the composition of the output textures, see Section 4.5.

6. Display

An adequate intermediate output of the current simulation
results is of great importance, as it bears upon the artist’s
ability to effectively steer the simulation towards the aimed
look, thus must also be coherent with the images generated
by the renderer that takes the composed textures (and option-
ally the material atlas) as input. For this reason, an adaptation
to the employed production pipeline is necessary in order to
resemble the appearance attained by the final renderer (either
in film production or games).

For our test cases, we render the scene with conven-
tional forward rendering, thereby binding the output textures
from the composition stage, i.e. the aged color, normals,
height and specularity. We avail tessellation shaders for the
displacement (using Phong tessellation by Boubekeur and
Alexa [BA08] and a distance-dependent continuous level-
of-detail) along with bump mapping to provide a general
feedback for the quality of the normal and height map. We
employed classic Phong shading, comprising the specularity
and the aged color, as well as shadows casted from the main
light. Additionally, we added ray-traced single-bounce re-
flections to display moisture. To enrich the weathered look,
we additionally place plantlets in regions of high organic
lichen, yielding a more detailed representation as can be seen
in Fig. 11. Given a fixed number of plantlets to place in total,
we randomly reseed plantlets to adapt to the current organic
distribution in the scene.

Figure 11: Depictions of the intermediate output. Left:
plantlets distributed in regions of high lichen growth. Right:
Distance-dependent tessellation with displacement map-
ping, depending on the amount of rust.

c⃝ The Eurographics Association 2012.



Tobias Günther, Kai Rohmer & Thorsten Grosch / GPU-accelerated Interactive Material Aging

Figure 12: Aging of a selected part of the hydrant scene,
shown at different time steps.

7. Results

Our main goal was to provide a fast aging simulation that
allows artists to interactively steer and design the aging pro-
cess. Therefore, our simulation presents an intermediate out-
put at interactive rates and allows modifying (e.g. moving) of
gammaton sources, giving the artists precise control. Fig. 12
shows the original scene and the aged scene at different time
steps. In the content creation workflow, our simulation is one
step among many. Figure 1 shows renderings done with our
exported aged material data in standard DCC tools.

Since our approach is based on a texture atlas, seams at
texture coordinate discontinuities are to expect if the splat
size is bigger than one atlas texel. When normalizing the
splat size to one texel, no seams occur as shown in Fig. 13.

The machine we experimented on is equipped with an In-
tel Core 2 Quad Q9650 CPU, an Nvidia GeForce GTX 560

Figure 13: With a splat size of one atlas texel no seams oc-
cur. Left: rusting fire hydrant, right: visualization of texture
coordinate discontinuities.

Figure 14: Comparison of the impact of different atlas res-
olutions on the quality, from left to right: 1k×1k, 2k×2k,
4k×4k. Advancing to 4k×4k is not worthwhile in this scene.

Table 1: Memory requirements for various atlas sizes.

Resolution Material Atlas Composed Textures
1k × 1k 56 MB 8 MB
2k × 2k 224 MB 32 MB
4k × 4k 896 MB 128 MB

Ti GPU with 3.5 GB VRAM and 4 GB RAM. The simulation
is mainly limited by the memory and the associated band-
width penalties. Table 1 shows the memory requirements for
the material atlas at different atlas resolutions and Figure 14
compares the obtained visual quality. Note that the system is
readily able to interactively simulate on an atlas resolution
that yields production level quality, thus no further off-line
high-quality simulation process is needed. The main bottle-
neck is the high transfer rate during the composition. The
simulation of the gammatons, i.e. the OptiX side of the sim-
ulation, is very fast and perfectly scalable to the scene size.
Table 2 shows the timing breakdown of the pipeline stages
(5k gammatons per iteration, screen resolution of 800 × 800
pixel) and Table 3 shows the timings of the intermediate
output dependend on the atlas resolutions. About 80% of

Table 2: Timing breakdown in ms for the pipeline stages at
an atlas resolution of 1k × 1k.

Step Chest Hydrant Otto
Simulation Step 2.76 2.72 2.93
Surface Update 0.03 0.03 0.03

Gammaton Update 0.03 0.03 0.03
Aging Process 0.25 0.25 0.25
Composition 5.91 6.04 5.99

Preview Rendering 7.95 7.12 8.81
Total Time 16.93 17.02 18.04

Table 3: Total timings in ms achieved at different atlas sizes.

Resolution Chest Hydrant Otto
1k × 1k 16.93 17.02 18.04
2k × 2k 36.26 37.82 36.58
4k × 4k 111.02 112.41 111.54

c⃝ The Eurographics Association 2012.



Tobias Günther, Kai Rohmer & Thorsten Grosch / GPU-accelerated Interactive Material Aging

the preview rendering costs originate in the brute-force re-
flection rendering, which can be improved or avoided if not
needed. Also note that the preview rendering and the com-
position – which are both the slowest components – are op-
tional to the simulation. Breaking the composition down, to
be carried out over a span of a few frames, and employing
a more sophisticated and optimized renderer allows to ad-
just to the narrow time budget of real-time applications, e.g.
modern games.

8. Conclusion and Future Work

In this paper, we presented the first interactive material ag-
ing simulation by tracing gammatons on the GPU. We em-
ployed a simple set of rules to achieve the most common
aging effects (e.g. dirt, rust, organic and water precipitate)
and displayed those in a few seconds in which the scene pro-
gressively and visibly ages. Additionally, we used user in-
teraction techniques known from sculpting for the adding of
filigree detail, thereby allowing to directly steer and design
the aging process.

Yet open to further research is the simulation on large
scenes. Currently, our approach is limited to a few objects
(chosen by the artist as a region of interest), as the mem-
ory requirements for the material atlas limit the quality of
the simulation. Possible out-of-core approaches to consider
are presented by Lefebvre et al. [LDN04] and virtual textur-
ing [vW09]. A number of extensions to our approach are
imaginable. If more memory was available (e.g. by com-
pressions), it would be possible to add multiple layers of
material, not only one as we do now. Stack-based terrains
[LMS11] are a possible source of inspiration. Accompanied
with this is the gradual peeling of the layers, possibly ini-
tiating a more distinctive deformation of the surface, which
could go beyond the capabilities of single-pass tessellation
shaders. Another important step is the implementation of a
more detailed temporal aging behavior, since many materials
are subject to a non-linear aging process [GTR∗06].

References
[BA08] BOUBEKEUR T., ALEXA M.: Phong tessellation. ACM

Transactions on Graphics 27, 5 (Dec. 2008), 141:1–141:5. 6

[BPMG04] BOSCH C., PUEYO X., MERILLOU S., GHAZAN-
FARPOUR D.: A Physically-Based Model for Rendering Realistic
Scratches. Computer Graphics Forum 23, 3 (2004), 361–370. 2

[CPK06] COLBERT M., PATTANAIK S., KRIVANEK J.: BRDF-
shop: creating physically correct bidirectional reflectance distri-
bution functions. IEEE Computer Graphics and Applications 26,
1 (2006), 30–36. 2

[CXW∗05] CHEN Y., XIA L., WONG T.-T., TONG X., BAO H.,
GUO B., SHUM H.-Y.: Visual Simulation of Weathering by
Gammaton Tracing. ACM Transactions on Graphics 24 (2005),
1127–1133. 2

[DEJ∗99] DORSEY J., EDELMAN A., JENSEN H. W., LEGAKIS
J., PEDERSEN H. K. H.: Modeling and rendering of weathered
stone. ACM Transactions on Graphics, Annual Conference Se-
ries (1999), 225–234. 2

[DGA04] DESBENOIT B., GALIN E., AKKOUCHE S.: Simulat-
ing and modeling lichen growth. Computer Graphics Forum 23,
3 (2004), 341–350. 2

[DH96] DORSEY J., HANRAHAN P.: Modeling and Rendering
of Metallic Patinas. In SIGGRAPH (1996), vol. 30, ACM Press,
pp. 387–396. 2

[DPH96] DORSEY J., PEDERSEN H. K. H., HANRAHAN P.:
Flow and Changes in Appearance. In SIGGRAPH (1996),
vol. 30, ACM, pp. 411–420. 2

[GC01] GOBRON S., CHIBA N.: Crack pattern simulation based
on 3D surface cellular automata. The Visual Computer 17, 5
(2001), 287–309. 2

[GTR∗06] GU J., TU C., RAMAMOORTHI R., BELHUMEUR P.,
MATUSIK W., NAYAR S.: Time-varying surface appearance: ac-
quisition, modeling and rendering. ACM Transactions on Graph-
ics 25, 3 (2006), 762–771. 2, 8

[HH90] HANRAHAN P., HAEBERLI P.: Direct WYSIWYG paint-
ing and texturing on 3D shapes. SIGGRAPH 24, 4 (1990), 215–
223. 2

[HTK98] HIROTA K., TANOUE Y., KANEKO T.: Generation of
crack patterns with a physical model. The Visual Computer 14
(1998), 126–187. 2

[HTK00] HIROTA K., TANOUE Y., KANEKO T.: Simulation of
three-dimensional cracks. The Visual Computer 16, 7 (2000),
371–378. 2

[KRB11] KIDER J. T., RAJA S., BADLER N. I.: Fruit Senescence
and Decay Simulation. Computer Graphics Forum 30, 2 (2011),
257–266. 2

[LDN04] LEFEBVRE S., DARBON J., NEYRET F.: Unified Tex-
ture Management for Arbitrary Meshes. Rapport de recherche
RR-5210, INRIA, 2004. 8

[LMS11] LÖFFLER F., MÜLLER A., SCHUMANN H.: Real-time
Rendering of Stack-based Terrains. In VMV (2011), pp. 161–168.
8

[MDG01] MERILLOU S., DISCHLER J.-M., GHAZANFARPOUR
D.: Corrosion: Simulating and Rendering. In Graphics Interface
(2001). 2

[MG08] MERILLOU S., GHAZANFARPOUR D.: A survey of ag-
ing and weathering phenomena in computer graphics. Computers
& Graphics 32, 2 (2008), 159–174. 2

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A.,
FRIEDRICH H., HOBEROCK J., LUEBKE D., MCALLIS-
TER D., STICH M.: OptiX : A General Purpose Ray Tracing
Engine. ACM Transactions on Graphics 29, 4 (2010), 1–13. 3

[PPD01] PAQUETTE E., POULIN P., DRETTAKIS G.: Surface
Aging by Impacts. Graphics Interface (2001), 175–182. 2

[PPD02] PAQUETTE E., POULIN P., DRETTAKIS G.: The Simu-
lation of Paint Cracking and Peeling. Graphics Interface (2002),
59–68. 2

[vW09] VAN WAVEREN J.: id tech 5 challenges - from texture
virtualization to massive parallelization. In SIGGRAPH 2009 Be-
yond Programmable Shading course (2009). 8

[WNH97] WONG T.-T., NG W.-Y., HENG P.-A.: A Geometry
Dependent Texture Generation Framework for Simulating Sur-
face Imperfections. In Eurographics Rendering Workshop 1997
(1997), Springer-Verlag, pp. 139–150. 2

[WTL∗06] WANG J., TONG X., LIN S., PAN M., WANG C.,
BAO H., GUO B., SHUM H.-Y.: Appearance manifolds for mod-
eling time-variant appearance of materials. ACM Transactions on
Graphics 25, 3 (2006), 754. 2

c⃝ The Eurographics Association 2012.


