Eurographics Conference on Visualization (EuroVis) 2016 Volume 35 (2016), Number 3
K.-L. Ma, G. Santucci, and J. van Wijk
(Guest Editors)

MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov
Exponent Fields

Tobias Giinther', Alexander Kuhn® and Holger Theisel'

1Visual Computing Group, University of Magdeburg
2Zuse Institute Berlin

- N
TLE samples: 3.88 X 10 "103.9 75 (6.2k it.)

» longitude 60

FTLE samples: 2 x 10!, 82.4 hrs (10k it.)

Figure 1: High-quality FTLE visualization of a European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis simulation
of the wind velocity field of the northern hemisphere at April, 10th in 2010. The three-dimensional FTLE field emphasizes the spatial
turbulence structure in the wind field and illustrates differences above land masses of North America (left and detail region), the North Atlantic
region (center) and Europe (right). Integration duration (GPU): T = 10, majorant extinction 6; = 1, FTLE range R = [0.35, 0.61], &; grid:
100 x 50 x 10, left: 1600 x 600, right: 1400 x 800 pixels.

Abstract

Traditionally, Lagrangian fields such as finite-time Lyapunov exponents (FTLE) are precomputed on a discrete grid and are ray
casted afterwards. This, however, introduces both grid discretization errors and sampling errors during ray marching. In this
work, we apply a progressive, view-dependent Monte Carlo-based approach for the visualization of such Lagrangian fields in
time-dependent flows. Our approach avoids grid discretization and ray marching errors completely, is consistent, and has a low
memory consumption. The system provides noisy previews that converge over time to an accurate high-quality visualization.
Compared to traditional approaches, the proposed system avoids explicitly predefined fieldline seeding structures, and uses
a Monte Carlo sampling strategy named Woodcock tracking to distribute samples along the view ray. An acceleration of this
sampling strategy requires local upper bounds for the FTLE values, which we progressively acquire during the rendering. Our
approach is tailored for high-quality visualizations of complex FTLE fields and is guaranteed to faithfully represent detailed ridge
surface structures as indicators for Lagrangian coherent structures (LCS). We demonstrate the effectiveness of our approach by
using a set of analytic test cases and real-world numerical simulations.

This is the authors preprint. The definitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/.

1. Introduction coherent structures (LCS) or material structures, that particles will
never cross [HY00, HalO1]. LCS have been shown to be valuable
in a wide range of application scenarios such as predicting ocean
pollutant transport due to oil mishaps, studying the spread of algae
in water currents, or to observe the feeding habits of a jellyfish
(see [Hal15] for an introduction). The FTLE field is a Lagrangian

In flow visualization, finite-time Lyapunov exponent (FTLE) fields
became one of the most popular tools to analyze coherent structures
in unsteady vector fields [PPF*11, SLMO5]. They describe how
nearby-released particles separate over time, which allows to ap-
proximate regions of coherent behavior and barriers, i.e., Lagrangian

(© 2016 The Author(s)
Computer Graphics Forum (©) 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Tobias Giinther, Alexander Kuhn & Holger Theisel / MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields

measure, i.e., a scalar field that arises from integration in a vector
field and poses specific challenges with respect to the required com-
putational resources and analysis complexity. All integration-based
scalar fields and Lagrangian features have a key property in com-
mon: due to the integration, features are non-local and are defined
at sub-grid resolution compared to the resolution of the underlying
vector field. Since observable features (e.g., ridges) can become
arbitrarily thin, the discretization and sampling of these fields is a
fundamental challenge. In 3D, these fields are typically precomputed
on grids and are afterwards view-dependently ray casted, which in-
troduces both grid discretization errors and sampling errors during
ray marching. Further, even adaptive discretization [SP07, BGT12]
can still be quite memory intensive.

In this paper, we aim for high accuracy renderings of integration-
based scalar fields, with focus on FTLE, by the use of Monte Carlo
rendering techniques. Similar to [KPB12], we adopt progressive vol-
umetric radiance transfer simulations to obtain high quality, aliasing-
free renderings. In this paper, however, we concentrate on renderings
of Lagrangian measures. A scalable implementation therefore re-
quires an acceleration data structure that allows to quickly determine
an upper bound for the integration-based scalar value in a certain re-
gion. Since this cannot be decided a-priori due to sampling problems,
the technical novelty of this paper is that we adapt the underlying
rendering method to progressively converge to the correct upper
bounds. The remaining technical aspects (free path sampling, trans-
mittance estimator and acceleration data structure) are applications
of recent research from the offline rendering community.

In the rendering community, a Monte Carlo method is called con-
sistent if it converges to the exact solution, i.e., is without any dis-
cretization errors. Consistent Monte Carlo techniques start noisy and
progressively converge, which typically requires time. Our method
is therefore not meant to replace recent interactive systems [BGT12],
but is rather aiming at HQ renderings for marketing, and the genera-
tion of exact ground truth data. To the best of our knowledge, we
present the first consistent renderings of Lagrangian measures. In
summary, our method avoids the intermediate grid discretization, is
without ray marching artifacts, has a low and bounded memory con-
sumption, is easily parallelized on GPUs and is easy to implement.

2. Related Work

In the following, we formally introduce FTLE and review the recent
work in consistent volume rendering.

2.1. Finite-Time Lyapunov Exponents

Given is an unsteady vector field v(x,¢) that describes a time-
dependent fluid flow. The movement of mass-less tracer particles is
governed by %x(t) =v(x(1),t), i.e., the particle trajectory is always
tangential to the flow. Such particle trajectory is commonly referred
to as pathline. The flow map o7 (x) = ¢(x,t,7) is a shortened nota-
tion, which maps a particle seeded at (x,¢) to its destination after
pathline integration for duration t. The (spatial) gradient of the flow
map V§(x,t,T) = %(b(x,t,r) describes the behavior of particles
released close to each other. We are interested in their separation
behavior, which is characterized by the right Cauchy-Green deforma-
tion tensor V1 V. Its largest real, positive eigenvalue Amax denotes

the (squared) largest magnitude of separation. Accounting for the
exponential growth and normalizing by the integration duration T
yields the finite-time Lyapunov exponent (FTLE) [HY00, HalO1]:

FTLE(x,#,1) — ﬁm Aamax (VTV),)

Commonly, ridges of FTLE fields are often used as indicators for
Lagrangian coherent structures (LCS) [SLMOS5]. In the literature,
a variety of alternative LCS extraction techniques can be found
(see [OHHI15] for an overview) that typically exploit differential
properties of the flow map and/or Lagrangian properties of the
flow around tracer trajectories. For FTLE, the probably most wide-
spread implementation (and the one we used) is to seed particles
close to one another and approximate the flow map gradient by
taking finite differences of their reached destinations, as in Haller
and Yuan [HYO00, HalO1]. The flow visualization community pro-
posed alternative methods, such as localized FTLE [KPH*09], streak
surface-based extraction [USE13] and timeline tracking [KER*14].
A benchmark comparison of further computation methods was com-
piled by Kuhn et al. [KRWT12].

FTLE computations can be accelerated, e.g., by adaptive refine-
ment of the flow map by Catmull-Rom interpolation [GGTHO7],
by the observation of filtered height ridges [SP07] or around auto-
matically detected geometric structures [BT13]. Further, higher
order flow map approximation [USK*12] and timeline refine-
ment [KER*14] schemes have been proposed. There exist sev-
eral integral curve approximation schemes, such as hierarchi-
cal lines [HSW11], interpolation [COJ15, AOGJ15] and edge
maps [BJB*12], which can be used to speed up any Lagrangian
analysis technique. Generally, this requires a compromise between
memory consumption, interactive response (speed) and accuracy
(quality). An interactive 3D FTLE visualization was developed by
Barakat et al. [BGT12], who interleave a computation and render-
ing phase to view-dependently build an adaptively sampled hier-
archical representation of the FTLE field. Similar to our method,
it produces more accurate FTLE approximations within multiple
rendering passes. The accuracy of their method, however, is bound
by memory and as it is based on ray marching, it cannot deliver a
consistent solution. In this paper, we strive for a consistent method
that operates on a small and fixed memory bound, and avoids dis-
cretization onto (adaptive) grids and ray marching errors.

2.2. Consistent Volume Rendering

In rendering, Monte Carlo sampling methods are deeply estab-
lished as a practical and general approach to calculate light trans-
port [Vea98]. Generally, a Monte Carlo estimator computes the
average of a sequence of n measurements M; with i € {1, ..., n}
that is supposed to match some unknown quantity Q. Thereby,
each measurement has an error M; — Q. If the expected value of
this error is zero, the method is called unbiased. A famous exam-
ple in light transport is bidirectional path tracing [LW93]. How-
ever, even biased methods can be made consistent if the bias con-
verges to zero as n increases, such as in progressive photon map-
ping [HOJOS]. Note that being biased does not necessarily mean
that convergence is reached slower. In this paper, we seize an unbi-
ased approach (Section 3). Our subsequent acceleration, however,

(© 2016 The Author(s)
Computer Graphics Forum (©) 2016 The Eurographics Association and John Wiley & Sons Ltd.

Tobias Giinther, Alexander Kuhn & Holger Theisel / MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields

is biased (Section 4). Nevertheless, the method remains consis-
tent. Consistent light transport in participating media has also been
extensively researched [CPP*05], including improved importance
sampling [KF12], efficient beam estimates [JNT* 11] and their union
with general light transport [KGH* 14], free path sampling [RSK08]
and its acceleration [YIC* 10, SKTM11], as well as efficient trans-
mittance estimators [NSJ14].

In visualization, direct volume rendering has found many applica-
tions [MHB *00, HLSRO08]. Photorealistic light transport on regular
scalar fields was considered in the Exposure renderer by Kroes et
al. [KPB12]. Note that integration-based scalar fields (such as FTLE)
are much more expensive to evaluate. A scalable implementation
requires additional changes to the necessary acceleration data struc-
tures [YIC*10, SKTM11] that could be neglected in [KPB12]. We
describe how we tailored the acceleration to FTLE fields in Section 4.
A general sampling and reconstruction framework for progressive
rendering was described by Frey et al. [FSME14]. Recent surveys
on GPU-based volume rendering have been compiled by Beyer et
al. [BHP14] and Balsa Rodriguez [BRGIG™ 14]. Typically, volume
rendering approaches employ ray marching. Ray marching, however,
results in unpredictable bias [NSJ14], and becomes much slower
in high resolution volume data (in integration-based volumes the
features can become arbitrarily thin) than Monte Carlo methods, as
demonstrated by Yue et al. [YIC*10].

3. Monte Carlo FTLE Rendering

Our method is generally applicable to a progressive and consistent
rendering of integration-based scalar fields. As such, we keep the
theory and problem formulation general. Given is a scalar field
F(x) : D — R that is defined over the spatial domain D C R>. In
this paper, we regard F (x) as the FTLE value at x at a given time ¢
and integration duration T, see Eq. (1).

F(x) =FTLE(x, ¢, T) 2)

‘We drop the temporal arguments for brevity, as they remain fixed.
Next, we explain the light transport model that we use and describe
its progressive Monte Carlo-based computation.

3.1. Volume Rendering Equation

We employ a single-scattering model [Max95], as illustrated in
Fig. 2. For this, we need to set an extinction coefficient 6;(x) and
a scattering albedo color ¢(x), which are both derived via transfer
functions from the scalar field F(x). Fig. 3 shows the transfer func-
tion that we used throughout the paper for color ¢(x). Extinction
o:(x) was mapped linearly on the same value range. The scattering
albedo c is the ratio between scattering and extinction coefficients
¢ = 0,/0;, and denotes the probability of a scattering event at a
certain location. Intuitively speaking, the color red means that all
red photons scatter, whereas blue and green photons are absorbed.

The transmittance 7 is the fraction of light that reaches point x’
if emitted from x (or vice versa), when traveling on a straight line.
In inhomogeneous media, it is defined as

To(x ¢ x') = e o 0r(x) ds .

(© 2016 The Author(s)
Computer Graphics Forum (© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Figure 2: Illustration of single-scattering light transport. A direc-
tional light emits radiance L. in direction @, which enters the
domain D at x;. The transmittance 7;(Xs <> Xz,) accounts for the
attenuation on the way toward Xy, where it scatters with coefficient
os. The amount of light that is scattered toward the viewer in direc-
tion @ is determined by fp (X, ®z — ©). Finally, the transmittance
T-(x < x;) attenuates toward the entry point x of the view ray.

¥ d8uer g11d

Figure 3: DOUBLE GYRE flow on the GPU without G; grid (Sec-
tion 4) at 4000 x 2000 pixels. Integration time: T = [0, 40], 6; = 100,
FTLE range R = [0.05, 0.235].

with x; = x+s ® and s € [0, d] parameterizes the ray in direction &
from x to x’. Note that by definition 0 < T, < 1.

The incoming radiance L at x with incoming direction ® is gov-
erned by the volume rendering equation [Jar08, CPP*05]:

d
Lx &) = /0 To(x & xy) Os(xs) Li(xs @) ds ()

- % i Ty (X 4> X5) Os(Xs) Li(Xs < @) 5
i=1

p(xs)
Here, without emission and surface interaction, thus the integral

only contains the in-scattered radiance L;. Distributing samples X
along the ray according to the probability

P(Xs) = 01 (Xs) Tr(X < Xg) (6)

importance samples the integrand with respect to high FTLE values
(high extinction ¢;) and high transmittance 7, which further reduces
Eq. (5) to

=

L(x+ @) ~ c(xs) Li(x5 + @) (7)

1
ni3

Later in Section 3.2, we explain a method that determines the scat-

Tobias Giinther, Alexander Kuhn & Holger Theisel / MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields

tering location x; of the photon according to probability p(xs). The
traveled distance from x to the scattering location X; is called free
flight distance d;(x — x').

Assuming single-scattering from a directional light source with
radiance L, incident direction @z, and x;, being the intersection of
the light ray with the domain boundary, the in-scattered radiance L;
at a point X toward the viewer in direction is:

Li(xs < (7)) = fP(XhG)L — 60) Tr(xs <> x1) Le ®)

with f(xs,® — ®) = 1/(4m) being an isotropic phase function
(other choices are possible [AD16]), which describes how much
light coming from @, is scattered at x; toward @.

Given the scattering event at X;, we need to determine the frac-
tion of light that arrives from the light source, i.e., T (Xs <> Xr).
Raab et al. [RSKO08] and Szirmay-Kalos et al. [SKTM11] computed
this for inhomogeneous participating media consistently as the ex-
pected value of a visibility experiment, in which they randomly emit
photons at X; and test if they reach xz:

1 ifdi(xs — > —
v :{ if di(xs — x1) > % — x| ©
0 else
Then, the final estimate of the incoming radiance becomes:
~ I ¢
L(X+ 0)~ Ton Y e(xs) v(xs) Le (10)

i=1

Several improvements to the transmittance calculation have been
proposed, including the separation of 7, into multiple parts and
solving them separately [SKTM11,NSJ14], and estimating the visi-
bility by multiple free path runs to reduce variance [JINT*11]. The
more recent ratio tracking and residual tracking [NSJ14] lower the
variance by weighting full paths, rather than taking them as binary
estimates.

3.2. Free Path Sampling

Evaluating Eq. (10) requires a method to generate samples X along
a ray according to probability p(x,) in Eq. (6). The most commonly
used method is the so-called Woodcock tracking, which is also
known as free path sampling. It probabilistically determines the
free flight distance of a photon until it reaches a scattering event
in inhomogeneous media. The method was invented in the 60s in
the neutron transport community [WMHL65] and was picked up
by [RSKO08] in the rendering community, where it had great impact
in practice [JNT*11,NSJ14].

The idea of the method is to fill up inhomogeneous media with
virtual particles to obtain a homogeneous medium with a joint,
spatially constant so-called majorant extinction G;. It then randomly
samples the free flight distance in the joint homogeneous medium
along the ray and thereby generates tentative particle interactions,
which are probabilistically selected as either being virtual or real.
In case of a virtual interaction (6;/G; < rand()), the random walk
continues. As proven by Coleman [Col68], the algorithm is unbiased
and generates samples according to probability p(xX;). The algorithm
is listed in Alg. 1. Carter et al. [CCT72] and Galtier et al. [GBC*13]
showed variants that handle non-bounding majorants, but at the cost
of increased variance [NSJ14].

Input: Ray origin x(and normalized direction ®, majorant
extinction G; and a ray interval (dyjn, dimax] to evaluate.
Output: Free flight distance d.
d < dpin —In(1 — rand()) /6;
while d < dyax N 6:(X9+d ®)/6: < rand() do
| d+d—In(1—rand())/6:
end
Algorithm 1: This algorithm determines the free flight distance of
a photon along a ray (xg, ®). It implements d;(x — x’) with @ be-
ing the normalized direction vector from x to X', dyin = ||X — Xo
and dyax = ||x/ —Xq || (Pseudo code adapted from [YIC*10].)

>

4. Acceleration by Spatially-Varying Extinction Bounds

The expected worst case number of samples a free path run performs
on aray interval (dpin, dmax] 18 Gt * (dmax — dmin), since the expected
step size in the joint homogeneous medium is 1/G;. Thus, the run-
time strongly depends on how tightly 6; bounds the true extinction
o;. This is especially crucial in “empty” areas, where a globally
defined upper bound strongly over-estimates the extinction. There-
fore, Yue et al. [YIC*10] proposed a kd-tree-based space partition
of the domain, in which they stored a bounding majorant extinction
G; per volume segment. In a related approach, Szirmay-Kalos et
al. [SKTM11] defined several segmentations over regular grids.

In this paper, we follow one approach in [SKTM11] and use
piecewise constant bounds stored on a coarse voxel grid, i.e., a con-
stant value per voxel. They have shown that for a correct transition
between volume segments, a free path run always has to start at the
entry point in the next voxel. If a scattering event is found inside a
voxel it is reported, otherwise the run proceeds in a DDA traversal
with the next voxel until the ray leaves the domain, see Alg. 2.

Input: Ray origin x(and normalized direction ®, and a ray
interval (dpiy, dmax] to evaluate.
Output: Free flight distance d.
V < locate voxel containing Xg + dyin ©
do
dyin — V.entry()
Dpax — V.exit()
6: < V.majorant()
d < freePathRun(xq, ®, G;, Apin, dAmax)
if d < dpax VV d > dipax then break;
while V < V.nextVoxel();
Algorithm 2: Determines free flight distance along a ray (xg, ®)
by DDA traversal in a voxel grid that contains the majorant extinc-
tion G;. Alg. 1 implements freePathRun.

Finding Local Upper Bounds

In integration-based scalar fields a tight upper bound cannot be
evaluated locally. Ridge features might become arbitrarily thin and
trying to sample them is a costly endeavor. For this reason, we start
with an (under-estimating) approximation of the true upper bound
by taking a small number of k samples per voxel of the acceleration
grid (typically, k =~ 4). This initial approximation causes the method
to be biased. Over time, the free path runs take additional samples,
at which we update the upper bounds. Since the free path sampling

(© 2016 The Author(s)
Computer Graphics Forum (©) 2016 The Eurographics Association and John Wiley & Sons Ltd.

Tobias Giinther, Alexander Kuhn & Holger Theisel / MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields

produces a continuous and unbiased sampling of the domain, the
true upper bound is found in the limit. Thus, the bias converges to
zero, and hence the method remains consistent.

The initial upper extinction bound estimate of a voxel might be
zero, even though a sharp ridge might exist in the voxel. In this case,
all future free path runs would skip the voxel, and no further samples
would be taken. The method would become inconsistent. To guar-
antee a certain minimum sampling rate, we clamp the extinction of
each voxel to a lower bound, which adds additional tracing cost. The
lower extinction bound is chosen such that a voxel with diagonal ex-
tent d has a py, probability of being sampled by a free path run along
the diagonal, i.e., the lower extinction bound is py, /d. Thereby, py,
is a user parameter that balances performance versus quality (con-
vergence to true upper bound), and we empirically set py = 0.1: In
practice, we found that setting py, = 0 gives visually similar results.
In the ABC flow, the root mean squared error (RMSE) for py, =0
after 1,000 iterations was reached with py, = 0.1 after 750 iterations
already. For py, = 0.1 the runtime increases by about factor 1.22.
Thus, the additional cost for assuring consistency amortizes.

5. Implementation

We implemented our method on the CPU (multi-threaded) and on
the GPU using DirectCompute. The accompanying material contains
C++ demo code that implements the Monte Carlo FTLE rendering
in the DOUBLE GYRE flow on the CPU. The CPU code is easy to
integrate into existing visualization frameworks, and may serve the
purpose of generating ground truth data for other rendering methods.

We computed the flow map gradients by taking finite differ-
ences [HYO00, HalO1]. Thereby, the separation distance was set to
10~%to capture thin ridge structures. Generally, separation distances
cannot be arbitrarily small, since for even smaller values numerical
problems arise in the computation of the eigenvalues of the Cauchy-
Green tensor in Eq. (1), see Kuhn et al. [KRWT12] for a study of
this effect. The numerical issues in the underlying scalar field are
independent of the rendering method, and thus do not make the
Monte Carlo approach unbiased or inconsistent.

Alg. 3 computes the incoming radiance L of a pixel according
to Eq. (10). Thereby, generateViewRay uniformly samples the pixel
for anti-aliasing purposes and the method intersectRayWithDomain
calculates the entry and exit distance of the view ray into and out of
the domain. Note that d,,;, is set to 0 if the ray origin is inside the
domain. Finally, Alg. 2 implements the method freePathRunDDA.

6. Results

We applied our method to a number of analytic and real-world flows.
In all figures, we list the rendering time, number of iterations (rays
per pixel), and the total number of FTLE samples taken to compute
the image. Note that we deliberately used a high number of iterations
to produce high quality images. A convergence series, showing that
early results are useful, too, is shown in the next section.

6.1. Double Gyre
The DOUBLE GYRE [SLMO05] is a periodic 2D unsteady vector field
that is commonly used as a benchmark for FTLE computations. In

(© 2016 The Author(s)
Computer Graphics Forum (© 2016 The Eurographics Association and John Wiley & Sons Ltd.

Input: Pixel coordinate (pyx, py), number of iterations n.
Output: Incoming radiance L of pixel.
L+0;
fori=1tondo
(xg, ®) < generateViewRay(px, py)
(dmin, dmax) < intersectRayWithDomain(xg, ®)
d « freePathRunDDA(X(, ®, din, dmax)
if d < dypax then
Xs X +d®
L+ L+c(xs) V(xs) Le
end

end
L+« L/(4nn)
Algorithm 3: Computes radiance according to Eq. (10).

this paper, we define it in the temporal-periodic domain D x T' =
[0, 2] x [0, 1] X [0, 10] and use the parameterization

B —0.1m sin (f(x, 1)) cos(ym)
vy 1) = <o.1n cos (f(x, 1)) sin(ym) & £(x, z))

with f(x, t) = a(t) x> + b(¢) x and a(t) = 0.25sin(¢ 7 /5) and b(t) =
1 —0.5sin(¢m/5). In order to create a 3D unsteady sequence, we set
it constant along the z dimension. An example is shown in Fig. 3.
Fig. 4 shows a convergence series, conveying an impression of what
early results look like and at which rate the noise reduces.

1)

6.2. ABC flow

The ABC (Arnold-Beltrami-Childress) flows are a class of parame-
terizable 3D unsteady flows that are often studied to assess turbu-
lence. We used the following parameterization:

c(t) sin(z) +cos(y)
v(x,y,z,1) = | V2sin(x) +c(t) cos(z) (12)
sin(y) 4 v/2 cos(x)

with ¢(¢) = v/3+ (1 —e~%!") sin(2nt). The flow is defined in the
domain D x T = [0, 2nt]* x [0, 40]. Fig. 5 gives an example of the
particularly sharp ridges obtained in this flow.

6.3. Rabinovich-Fabrikant Equations

The RABINOVICH-FABRIKANT equations describe a parameter-
dependent 3D steady dynamical system that exhibits chaotic be-
havior for certain parameter configurations. We consider it in the
domain D = [—15, 15]*:

Ye—1+427) +yx
v(x,y,2) = | x(Bz+1—x*) +yy (13)
—2z(a+xy)
here, with oo = 0.98 and y = 0.1. This flow is difficult to analyze
numerically, as traditional integrators reach different attractors de-

pending on the step size [DCO04]. In Fig. 6, we used a fourth-order
Runge-Kutta integrator with step size Ah = 0.1.

6.4. Boussinesq

The BOUSSINESQ flow was provided by Tino Weinkauf, was sim-
ulated using Gerris Flow solver [Pop04] and uses the Boussinesq-
approximation to generate the turbulent vortex behavior. It contains

Tobias Giinther, Alexander Kuhn & Holger Theisel / MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields

(a) 1.1 secs, 3 iter. (b) 10 secs, 27 iter.

(d) 10 mins, 1600 iter.

(c) 1 min, 160 iter.

Figure 4: Convergence series of a close-up in the DOUBLE GYRE at 300 x 300 pixels, using the GPU (without &; grid). The majority of the
noise vanishes in a few minutes. Integration time: 7' = [0, 40], 6; = 100, FTLE range R = [0.05, 0.235].

FTLE samples: 5.16 x 10'!, 2.9 hrs (10k it.)

Figure 5: ABC flow on the GPU without 6; grid at 1500 x 1500
pixels, showing several sharp ridges. Integration time: 7 = [5, 15],
6: = 35, FTLE range R = [0.38, 0.92].

a 2D unsteady convection simulation that develops around a heated
cylinder. In Fig. 7, the start time of the integration is mapped to the
third spatial dimension.

6.5. Simulated Cloud-topped Boundary Layer (CTBL)

The CTBL data set contains a cloud resolving boundary layer sim-
ulation (UCLA-LES, details in [Ste13]). A large eddy simulation
(LES) was used on a finite size domain (longitudinal, latitudinal
extend: 10km with 384 cells, height extend 3.2 km with 130 cells)
under idealized conditions: It uses double-periodic boundary condi-
tions and homogeneous surface forcing, while large-scale informa-
tion are taken from the COSMO-DE simulation model. The purpose
of this model is to study the detailed cloud dynamics on high spatial
and temporal resolutions for sub-scale parametrization of synoptic

FTLE samples: 1.58 x 10'1,
22.6hrs (10k it.)

Figure 6: RABINOVICH-FABRIKANT flow on the GPU with &; grid
of 50 x 20 x 5 at 1200 x 750 pixels. Integration duration T = 20,
6: =5, FTLE range R = [0, 0.47].

climate simulations. For this task, convective flow patterns are of
central interest since they are tightly coupled with cloud production
and interaction processes. FTLE fields are specifically useful to
visualize the complex spatial structure and distribution of turbulent
plumes produced by the UCLA-LES model. The results for our
method are shown in Fig. 8.

6.6. ECMWF Reanalysis

The ECMWEF data set shows a large scale ECMWF reanalysis
simulation of the weather in the northern hemisphere (long. range:
—120° to 60° with 1200 cells, lat. range: 30° to 90° with 40 cells,
height from Om to 1050 m with 90 cells) from April 10 — 19, 2010.
Similarly to the CTBL example, convective flow features in the
wind velocity field are of central interest, since they are strongly
related to the exchange of energy and transport of trace gases in the
atmosphere. LCS features have been shown to characterize trans-
port patterns and mixing behavior of atmospheric flows [Hall5]. In
Fig. 1, FTLE highlights the characteristic structure of atmospheric
features above the North American land surface (bottom left, de-
tailed zoom), the North Atlantic ocean (center) and the European
land mass (bottom right corner). Specifically the spatial turbulent
structure of vortices (cyclones) and stream-like features are empha-

(© 2016 The Author(s)
Computer Graphics Forum (©) 2016 The Eurographics Association and John Wiley & Sons Ltd.

Tobias Giinther, Alexander Kuhn & Holger Theisel / MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields

et LN VL

FTLE samples: 1.9 x 10

W 117.6hrs (5.2k it.)

¥

X i 2 15 ol oA i
E&ETLE“Q}PIEMS_‘_“DX 10°°,.98.1 hrs (-1‘.41**\‘ .

Figure 8: CLOUD-TOPPED BOUNDARY LAYER flow on the GPU with 40 x 20 x 20 &; grid. Integration duration: T = 30, majorant extinction
6; =2, FTLE range R = [0.09, 0.21], left: 1200 x 640, right: 800 x 800 pixels.

FTLE samples: 8.57 x 10'°,
34.2hrs (10k it.)

FTLE samples: 7.64 x 1010,
24.2 hrs (10k it.)

Figure 7: BOUSSINESQ flow on the GPU with &; grid of 5 x 10 x 5
at 600 x 1600 pixels. We set 5; = 60 and FTLE range R = [0.02, 1].
The flow is shown at different start times (front slice), left: 7y = 1,
right: tp = 5, both with T = 10.

sized. Note that we used time-averaged velocity fields to compute
FTLE fields.

7. Discussion

In the following, we compare our method with traditional ray casting
and report timings, number of FTLE samples and memory consump-
tion for the figures shown throughout the paper. Afterwards, we
observe the convergence behavior of the Monte Carlo integration
and discuss the limitations.

7.1. Comparison with Ray Casting

First, we show the artifacts that grid discretization and ray marching
entail. The results are obtained in the ABC flow with our CPU code

(© 2016 The Author(s)
Computer Graphics Forum (©) 2016 The Eurographics Association and John Wiley & Sons Ltd.

using a resolution of 100 x 100 pixels. For comparison, a GPU-based
high resolution image of the same flow is shown in Fig. 5.

In Figs. 9a and 9b, the scalar field was discretized onto a 200°
or 500° regular grid, respectively, and was afterwards ray casted.
Thereby, the separation distance of particles in the FTLE computa-
tion was set to the voxel size. The FTLE value range depends on the
separation distance, same as the sharpness of the ridges that can be
recovered. The tracing time is reported per iteration.

Figs. 9c and 9d show the same setting as in (a)—(b), but with
smaller separation distance. Here, the discretization onto the grid
causes an under-sampling of the ridges. Since the discrete sampling
does not preserve maxima, the transfer functions return more trans-
parent and blueish values (color shift). We display the result with 1
sample per pixel (spp) to show the systematic bias and the average
of 10spp, i.e., 10 tracing iterations. Fig. 9e and Fig. 9f apply the
ray casting directly to the FTLE scalar field without discretization.
The step size discretization during ray marching results in Fig. 9e in
heavy aliasing. We used the same step sizes as in (a)—(d) and show
1spp. Although early ray termination was used, the computation
time of ray casting is high.

Fig. 9g and Fig. 9h show results of our consistent Monte Carlo-
based approach. The discretization artifacts (aliasing and color
shifts) are avoided; instead the result contains the typical Monte
Carlo noise. In a time comparable to Fig. 9c, 70 iterations could be
computed per pixel in Fig. 9g. With Fig. 9d setting the reference
time, 1055 iterations were computed in Fig. 9h. The precomputa-
tion of the initial &; grid (60%, 4 samples per voxel) took 17s. Our
method takes multiple spp, while the initial 6; grid is precomputed
once per FTLE field.

7.2. Timings, FTLE Samples and Memory Consumption

‘We used an AMD Phenom II X6 1055T CPU, and an Nvidia GeForce
GTX 970 GPU with 4 GB VRAM. The results in Fig. 9 were ob-
tained on an Intel Core i7-2600K CPU. Table 1 lists for all datasets
the viewport resolution, and the average time and average number of

Tobias Giinther, Alexander Kuhn & Holger Theisel / MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields

1spp 10spp

(a) Ray casting of discrete grid
with 2003 voxels (30.5MB), grid
precomp.: 22, tracing: 1.3s.

1spp 10spp

(c) Ray casting of discrete grid
with 2003 voxels (30.5 MB), grid pre-
comp.: 129, tracing: 1.3s.

10spp

(b) Ray casting of discrete grid
with 5003 voxels (476 MB), grid pre-
comp.: Smin, tracing: 7.2s.

1spp 10spp

(d) Ray casting of discrete grid
with 5003 voxels (476 MB), grid pre-
comp.: 30min, tracing: 7.2s.

(e) Ray casting without grid (evalu-
ate FTLE at each sample), 11.3 min,
insufficient sampling rate (aliasing
artifacts).

(g) Monte Carlo (ours), 70 iterations,
111.3s, no discretization artifacts,
contains noise.

(f) Ray casting without grid (evalu-
ate FTLE at each sample), 69.9 min,
higher sampling rate than (e), still
some artifacts.

(h) Monte Carlo (ours), 1055 itera-
tions, 29.7 min, less noise.

Figure 9: Comparison of Monte Carlo and ray casting.

FTLE samples (cost) per iteration per pixel. The latter is hardware-
independent and only depends on the dataset and view. The CPU
timings are in milliseconds (ms), whereas GPU timings are in mi-
croseconds (us). We conducted experiments with and without G;
grids, and list the required main memory. Our method stores four
floats per pixel for the accumulated radiance (RGBA) and an op-
tional (scalar) acceleration grid (both single precision). Thus, 16 MB
are required per megapixel plus < 1 MB for a 6; grid, as we have
used on the GPU. The DOUBLE GYRE was rendered at highest
resolution, and has thus the largest memory consumption.

The GPU code is orders of magnitude faster than the CPU code,
and especially on the CPU the acceleration greatly increases the
performance. In the RABINOVICH case (Fig. 6), for instance, large
portions of the domain are empty. Thus, here, the accelerated CPU
version is about 15x faster. The speedup obtained by the &; grid de-
pends on the tightness of the upper extinction bounds. If large areas
in the domain have low extinction, much can be gained compared to
a global constant upper bound. This is visible in the BOUSSINESQ
case in Fig. 7. The left image has more empty areas and here the
time and cost savings are greater than in the right image.

On the GPU, arithmetic (ALU) calculations are much faster than
memory accesses (e.g., lookups in the &; grid) which is why we
generally recommend lower &; grid resolutions than for the CPU
in order to reduce memory I/O pressure. Our manually-tuned grid
resolutions are listed in Table 2. Tracing in analytic fields is entirely
ALU bound and requires no memory access at all. For the two
analytic examples (DOUBLE GYRE in Fig. 3, ABC in Fig. 5), the &;
lookups are more expensive than the brute force evaluation of more
FTLE samples, while the balance tips in favor of the &; grid for the
RABINOVICH case. In general, the 6; grid can be recommended
for sampled real-world flows, as here the &; lookup cost amortizes
much faster.

10° ——— Double Gyre—— Rabinovich CTBL
w __—— ABC — Boussinesq ECMWF
0 1 —
s 10
14
-2
10 L !
10° 10" 10°

Iteration

Figure 10: Plotting the RMSE over time in log-log scale shows the
linear convergence expected from MC methods.

7.3. Convergence

In (bounded) Monte Carlo integration, the variance decreases asymp-
totically to zero. Plotting the root-mean-square error (RMSE) over
time, i.e., the difference between the progressively estimated radi-
ance from Eq. (10) and the ground truth radiance, in log-log scale
thereby shows a linear convergence behavior in Fig. 10. The plotted
RMSE for our data sets confirms that the method converges as ex-
pected. In this experiment, we used the GPU for the DOUBLE GYRE
and ABC flow without &; grid and for the others with &; grid.

7.4. Limitations

Our bottleneck is the pathline integration. Recently, interpolation
of pathlines from a set of candidates rather than full numerical

(© 2016 The Author(s)
Computer Graphics Forum (©) 2016 The Eurographics Association and John Wiley & Sons Ltd.

Tobias Giinther, Alexander Kuhn & Holger Theisel / MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields

Viewport CPU time (ms) GPU time (us) cost CPU cost | GPU cost || memory
Data set . .

resolution w/o acc. w/acc. | wloacc. w/acc. || w/oacc. | w/acc. w/ acc. (in MB)
DOUBLE GYRE, Fig. 3 4000 x 2000 241 1.14 2.44 8.25 5.94 2.79 5.20 122.07
ABC, Fig. 5 1500 x 1500 0.52 0.13 0.46 1.00 22.93 5.90 10.25 34.33
RABINOVICH, Fig. 6 1200 x 750 1.82 0.12 11.40 9.04 91.31 5.73 17.56 13.75
BOUSSINESQ, Fig. 7 (left) 600 x 1600 4.08 0.13 100.33 12.83 47.12 1.49 8.93 14.65
BOUSSINESQ, Fig. 7 (right) | 600 x 1600 1.73 0.17 36.58 9.08 24.74 2.09 7.96 14.65
CTBL, Fig. 8 1200 x 640 14.10 3.65 250.83 106.01 62.99 16.09 47.55 11.78
CTBL, Fig. 8 (close-up) 800 x 800 20.94 5.88 220.00 12541 93.38 25.77 76.49 9.83
ECMWEF, Fig. 1 1600 x 600 3.29 0.54 79.50 30.90 54.17 7.56 20.83 14.84
ECMWEF, Fig. 1 (close-up) | 1400 x 800 6.82 1.28 121.03 33.40 111.56 17.62 34.64 17.28

Table 1: Viewport resolution, average time and average number of FTLE samples (average cost) per iteration per pixel, as well as the memory
consumption for the respective figures throughout the paper (single precision). W/o acc. the CPU and GPU have identical cost.

Data set G; grid (CPU) G; grid (GPU)
DOUBLE GYRE 100 x 50 x 1 20x 10x 1
ABC 60 x 60 x 60 20 x 20 x 20
RABINOVICH 300 x 300 x 30 50 x20x5
BOUSSINESQ 200 x 200 x 50 S5x10x5
CTBL 200 x 100 x 100 40 x 20 x 20
ECMWF 200 x 100 x 100 100 x 50 x 10

Table 2: Manually-tuned resolutions of the &; grids.

integration has been investigated [COJ15, AOGJ15]. Clearly, any
interpolation-based approach introduces an error that makes the ren-
dering inconsistent. Nevertheless, if faster previews are desired in an
entirely Monte Carlo-based framework, this is a promising approach
to take. Every Monte Carlo-based approach essentially reduces vari-
ance on some quantity, which shows up as slowly reducing noise. In
the rendering community, reconstruction filters and noise removal
are applied to remove the residual noise in order to satisfy the often
narrow time budgets. Out of that need, a large number of filters have
been developed [ZJL*15] that are applicable here as well.

8. Conclusions

In this paper, we applied a consistent light transport simulation
method to the rendering of Lagrangian scalar fields, focusing on
FTLE. While previous approaches discretize the FTLE field onto
a (possibly adaptive) grid [BGT12], our method avoids discretiza-
tion errors completely and operates on a fixed and small memory
bound. We used a progressive Monte Carlo sampling technique
named Woodcock tracking for distributing the samples along the
view ray, which obtains consistent solutions with iterative previews
and is free of ray marching artifacts. With this, we obtained high
quality visualizations of FTLE fields, which may serve as ground
truth or are available for marketing applications. A technical novelty
of this paper is that we tailored the acceleration data structure to
FTLE, by progressively converging to correct local upper extinc-
tion bounds, which are not available a-priori in Lagrangian scalar
fields. In the future, we would like to incorporate approximating
techniques to provide faster previews, such as pathline interpolation
methods [COJ15, AOGJ15]. Further, we would like to experiment
with adaptive sampling and reconstruction filters [ZJL*15]. The
recent residual tracking and ratio tracking [NSJ14] are alternative
approaches to estimate transmittance, which could be evaluated in
the context of Lagrangian scalar fields in future work. Using regular

(© 2016 The Author(s)
Computer Graphics Forum (© 2016 The Eurographics Association and John Wiley & Sons Ltd.

grids to find local bounds of the majorant extinction as in [SKTM11]
requires to set the right voxel resolution manually to get the best
performance. Yue et al. [YIC*10] avoided this by construction of a
kd-tree with an adequate stopping criterion, which we would like to
test. Our method is purely image-based. For further processing of
the FTLE ridge surfaces, geometry extraction techniques are still a
challenging topic.

Acknowledgements

This work was supported by DFG grant number TH 692/8-1 and
was partially funded by the German Federal Ministry of Education
and Research under grant number 01LK1213A.

References

[AD16] AMENT M., DACHSBACHER C.: Anisotropic ambient volume
shading. IEEE Transactions on Visualization and Computer Graphics 22,
1 (2016), 1015-1024. 4

[AOGJ15] AGRANOVSKY A., OBERMAIER H., GARTH C., Joy K. I.: A
multi-resolution interpolation scheme for pathline based Lagrangian flow
representations. In Proc. SPIE, Visual Data Analysis Conference (2015),
vol. 9397, p. 93970K. 2, 9

[BGT12] BARAKAT S. S., GARTH C., TRICOCHE X.: Interactive com-
putation and rendering of finite-time Lyapunov exponent fields. IEEE
Transactions on Visualization and Computer Graphics 18, 8 (2012), 1368—
1380. 2,9

[BHP14] BEYER J., HADWIGER M., PFISTER H.: A survey of GPU-
based large-scale volume visualization. In Proc. EuroVis State of the Art
Reports (2014), The Eurographics Association. 3

[BIB*12] BHATIA H., JADHAV S., BREMER P., CHEN G., LEVINEJ. A,
NONATO L. G., PAscucct V.: Flow visualization with quantified spatial
and temporal errors using edge maps. IEEE Transactions on Visualization
and Computer Graphics 18,9 (2012), 1383-1396. 2

[BRGIG*14] BALSA RODRIGUEZ M., GOBBETTI E., IGLESIAS GUI-
TIAN J., MAKHINYA M., MARTON F., PAJAROLA R., SUTER S.: State-
of-the-art in compressed GPU-based direct volume rendering. Computer
Graphics Forum 33, 6 (2014), 77-100. 3

[BT13] BARAKAT S. S., TRICOCHE X.: Adaptive refinement of the

flow map using sparse samples. IEEE Transactions on Visualization and
Computer Graphics (Proc. IEEE SciVis) 19, 12 (2013), 2753-2762. 2
[CCT72] CARTER L. L., CASHWELL E. D., TAYLOR W. M.: Monte
Carlo sampling with continuously varying cross sections along flight
paths. Nucl. Sci. and Eng. 48,4 (1972),403-411. 4
[COJ15] CHANDLER J., OBERMAIER H., JOoy K. I.: Interpolation-based

pathline tracing in particle-based flow visualization. /EEE Transactions
on Visualization and Computer Graphics 21, 1 (2015), 68-80. 2,9

Tobias Giinther, Alexander Kuhn & Holger Theisel / MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields

[Col68] COLEMAN W. A.: Mathematical verification of a certain Monte
Carlo sampling technique and applications of the technique to radiation
transport problems. Nucl. Sci. and Eng. 32, 1 (1968), 76-81. 4

[CPP*05] CEREZO E., PEREZ F., PUEYO X., SERON F. J., SILLION
F. X.: A survey on participating media rendering techniques. The Visual
Computer 21, 5 (2005), 303-328. 3

[DC04] DANCA M.-F., CHEN G.: Bifurcation and chaos in a complex
model of dissipative medium. International Journal of Bifurcation and
Chaos 14, 10 (2004), 3409-3447. 5

[FSME14] FREY S., SADLO F., MA K.-L., ERTL T.: Interactive progres-
sive visualization with space-time error control. I[EEE Transactions on
Visualization and Computer Graphics 20, 12 (2014), 2397-2406. 3

[GBC*13] GALTIER M., BLANCO S., CALIOT C., COUSTET C.,
DAUCHET J., HAFI M. E., EYMET V., FOURNIER R., GAUTRAIS J.,
KHUONG A., PIAUD B., TERREE G.: Integral formulation of null-
collision Monte Carlo algorithms. Journal of Quant. Spectroscopy and
Rad. Transfer 125 (2013), 57-68. 4

[GGTHO7] GARTH C., GERHARDT F., TRICOCHE X., HAGEN H.: Effi-
cient computation and visualization of coherent structures in fluid flow
applications. IEEE Transactions on Visualization and Computer Graphics
(Proc. IEEE Visualization) 13, 6 (2007), 1464-1471. 2

[Hal01] HALLER G.: Distinguished material surfaces and coherent struc-
tures in three-dimensional fluid flows. Phys. D 149, 4 (2001), 248-277.
1,2,5

[Hall5] HALLER G.: Lagrangian coherent structures. Annual Review of
Fluid Mechanics 47 (2015), 137-162. 1,6

[HLSRO8] HADWIGER M., LIUNG P., SALAMA C. R., ROPINSKI T.:
Advanced illumination techniques for GPU volume raycasting. In ACM
SIGGRAPH ASIA Courses (2008), pp. 1:1-1:166. 3

[HOJO8] HACHISUKA T., OGAKI S., JENSEN H. W.: Progressive photon
mapping. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 27, 5 (2008),
130:1-130:8. 2

[HSW11] HLAWATSCH M., SADLO F., WEISKOPF D.: Hierarchical line
integration. /EEE Transactions on Visualization and Computer Graphics
17,8 (2011), 1148-1163. 2

[HY00] HALLER G., YUAN G.: Lagrangian coherent structures and
mixing in two-dimensional turbulence. Phys. D 147, 3—4 (2000), 352—
370. 1,2,5

[Jar08] JAROSZ W.: Efficient Monte Carlo Methods for Light Transport in
Scattering Media. PhD thesis, UC San Diego, La Jolla, CA, USA, 2008.
3

[INT*11] JAROSZ W., NOWROUZEZAHRAI D., THOMAS R., SLOAN
P.-P., ZWICKER M.: Progressive photon beams. ACM Trans. Graph.
(SIGGRAPH Asia) 30, 6 (2011), No. 181. 3,4

[KER*14] KUHN A., ENGELKE W., ROSSL C., HADWIGER M.,
THEISEL H.: Time line cell tracking for the approximation of Lagrangian
coherent structures with subgrid accuracy. Computer Graphics Forum 33,
1(2014), 222-234. 2

[KF12] KULLA C., FAJARDO M.: Importance sampling techniques for
path tracing in participating media. Computer Graphics Forum (Proc.
EGSR) 31,4 (2012), 1519-1528. 3

[KGH*14] KRIVANEK J., GEORGIEV 1., HACHISUKA T., VEVODA P.,
SIK M., NOWROUZEZAHRAI D., JAROSZ W.: Unifying points, beams,
and paths in volumetric light transport simulation. ACM Trans. Graph.
(Proc. SIGGRAPH) 33,4 (2014), 103:1-103:13. 3

[KPB12] KROES T., PoST F. H., BOTHA C. P.: Exposure render: An
interactive photo-realistic volume rendering framework. PLoS ONE 7,7
(07 2012), e38586. 2, 3

[KPH*09] KASTEN J., PETZ C., HOTZ 1., NOACK B., HEGE. H.-C.:
Localized finite-time Lyapunov exponent for unsteady flow analysis. In
Proc. Vision, Modeling and Visualization (2009), pp. 265-274. 2

[KRWTI12] KUHN A., ROSSL C., WEINKAUF T., THEISEL H.: A bench-
mark for evaluating FTLE computations. In Proc. IEEE PacificVis (2012),
pp. 121-128. 2,5

[LW93] LAFORTUNE E. P., WILLEMS Y. D.: Bi-directional path tracing.
Proc. Compugraphics (1993), 145-153. 2

[Max95] MAX N.: Optical models for direct volume rendering. /EEE
Transactions on Visualization and Computer Graphics 1,2 (1995), 99—
108. 3

[MHB*00] MEISSNER M., HUANG J., BARTZ D., MUELLER K., CRAW-
FIS R.: A practical evaluation of popular volume rendering algorithms.
In IEEE Symp. VolVis (2000), pp. 81-90. 3

[NSJ14] NOVAK J., SELLE A., JAROSZ W.: Residual ratio tracking
for estimating attenuation in participating media. ACM Trans. Graph.
(SIGGRAPH Asia) 33, 6 (2014), 179:1-179:11. 3,4,9

[OHH15] ONuU K., HUHN F., HALLER G.: LCS tool: a computational
platform for lagrangian coherent structures. Journal of Computational
Science 7 (2015), 26-36. 2

[Pop04] POPINET S.: Free computational fluid dynamics. Cluster World
2,6(2004). gfs.sourceforge.net [Online; accessed 25-February-
2016]. 5

[PPF*11] POBITZER A., PEIKERT R., FUCHS R., SCHINDLER B., KUHN
A., THEISEL H., MATKOVIC K., HAUSER H.: The state of the art in
topology-based visualization of unsteady flow. Computer Graphics Forum
30,6 (2011), 1789-1811. 1

[RSKO08] RAAB M., SEIBERT D., KELLER A.: Unbiased global illumina-
tion with participating media. In Monte Carlo and Quasi-MC Methods
2006. Springer, 2008, pp. 591-605. 3, 4

[SKTM11] SzIRMAY-KALOS L., TOTH B., MAGDICS M.: Free path sam-
pling in high resolution inhomogeneous participating media. Computer
Graphics Forum 30, 1 (2011), 85-97. 3,4, 9

[SLMO5] SHADDEN S. C., LEKIEN F., MARSDEN J. E.: Definition and
properties of Lagrangian coherent structures from finite-time Lyapunov
exponents in two-dimensional aperiodic flows. Phys. D 212, 34 (2005),
271-304. 1,2,5

[SPO7] SaDLO F., PEIKERT R.: Efficient visualization of Lagrangian
coherent structures by filtered AMR ridge extraction. IEEE Transactions
on Visualization and Computer Graphics (IEEE Visualization) 13, 6
(2007), 1456-1463. 2

[Ste13] STEVENS B.: Introduction to UCLA-LES, 2013.
http://www.mpimet .mpg.de/fileadmin/atmosphaere/
herz/les_doc.pdf [Online; accessed 25-February-2016]. 6

[USE13] UFFINGER M., SADLO F., ERTL T.: A time-dependent vector
field topology based on streak surfaces. IEEE Transactions on Visualiza-
tion and Computer Graphics 19, 3 (2013), 379-392. 2

[USK*12] UFFINGER M., SADLO F., KIRBY M., HANSEN C., ERTL T.:
FTLE computation beyond first-order approximation. In Eurographics
(Short Papers) (2012), pp. 61-64. 2

[Vea98] VEACH E.: Robust Monte Carlo Methods for Light Transport
Simulation. PhD thesis, Stanford University, Stanford, CA, USA, 1998. 2

[WMHL65] Woobcock E., MURPHY T., HEMMINGS P., LONGWORTH
S.: Techniques used in the GEM code for Monte Carlo neutronics calcula-
tions in reactors and other systems of complex geometry. In Applications
of Comp. Meth. to Reactor Problems (1965), vol. 557, Argonne National
Laboratory, pp. ANL-7050. 4

[YIC*10] YUE Y., IWASAKI K., CHEN B.-Y., DOBASHI Y., NISHITA
T.: Unbiased, adaptive stochastic sampling for rendering inhomogeneous
participating media. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 29, 6
(2010), 177:1-177:8. 3,4, 9

[ZJL*15] ZWICKER M., JAROSZ W., LEHTINEN J., MOON B., RA-
MAMOORTHI R., ROUSSELLE F., SEN P., SOLER C., YOON S.-E.:
Recent advances in adaptive sampling and reconstruction for Monte Carlo
rendering. Computer Graphics Forum (Proc. Eurographics) 34, 2 (2015),
667-681. 9

(© 2016 The Author(s)
Computer Graphics Forum (©) 2016 The Eurographics Association and John Wiley & Sons Ltd.

gfs.sourceforge.net
http://www.mpimet.mpg.de/fileadmin/atmosphaere/herz/les_doc.pdf
http://www.mpimet.mpg.de/fileadmin/atmosphaere/herz/les_doc.pdf

