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Fig. 1: We propose a novel objective vortex coreline extraction method, which optimizes the reference frame of observers that are for
the first time guaranteed to follow along pathlines, i.e., they are guaranteed to be Lagrangian. Vortex cores arise as minima (in 2D) and
valley lines (in 3D) of an observed time derivative. Here, the vortex corelines and their paths are visualized for the SQUARE CYLINDER
flow. To show the swirling motion, we release streamlines (color-coded by time from yellow to red) in subsequent time steps in the
observed vector field, which demonstrates the rotating motion. The volume rendering displays the vortex deviation error scalar field.

Abstract—The numerical extraction of vortex cores from time-dependent fluid flow attracted much attention over the past decades. A
commonly agreed upon vortex definition remained elusive since a proper vortex core needs to satisfy two hard constraints: it must be
objective and Lagrangian. Recent methods on objectivization met the first but not the second constraint, since there was no formal
guarantee that the resulting vortex coreline is indeed a pathline of the fluid flow. In this paper, we propose the first vortex core definition
that is both objective and Lagrangian. Our approach restricts observer motions to follow along pathlines, which reduces the degrees of
freedoms: we only need to optimize for an observer rotation that makes the observed flow as steady as possible. This optimization
succeeds along Lagrangian vortex corelines and will result in a non-zero time-partial everywhere else. By performing this optimization
at each point of a spatial grid, we obtain a residual scalar field, which we call vortex deviation error. The local minima on the grid serve
as seed points for a gradient descent optimization that delivers sub-voxel accurate corelines. The visualization of both 2D and 3D
vortex cores is based on the separation of the movement of the vortex core and the swirling flow behavior around it. While the vortex
core is represented by a pathline, the swirling motion around it is visualized by streamlines in the correct frame. We demonstrate the
utility of the approach on several 2D and 3D time-dependent vector fields.

Index Terms—Flow visualization, vortices, objective methods

1 INTRODUCTION

Vortices and in particular vortex cores are among the most interesting
and relevant features in fluid flows. Vortex cores have a simple common
understanding: the flow swirls/revolves around a point (in 2D) or an
axis line (in 3D) [16]. This point/axis line is called vortex core. Vortex
cores may move over time. Vortex corelines in 3D may also change
their shape, split, merge, appear, and disappear over time. Despite this
common understanding, there is no commonly accepted unique defi-
nition of vortex cores. There are, however, a few commonly accepted
desired properties of vortex cores and topological features [4]:

• Lagrangian. In 2D, vortex cores are pathlines of the flow. In 3D,
vortex cores are curves advected by the flow, i.e., path surfaces.

• Objectivity. An arbitrarily moving observer should always ob-
serve the same vortex core, independent of its own movement.

Existing approaches to extract and visualize vortex cores do not meet
both properties. Recently, Rautek et al. [33] introduced a new approach
to track 2D vortex cores by applying a joint optimization in the flow
domain and in the space of all Killing fields describing the observer
motion. The resulting objective moving vortex cores are compared
with existing approaches, such as the approach by Günther et al. [14].
Numerical tests on several data sets revealed comparable results. Fur-
ther, [33] claimed that the resulting vortex cores are pathlines, where
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deviations from perfect pathlines are only due to numerical inaccuracies.
For visual representation, a magic lens metaphor was introduced, allow-
ing to show both the swirling flow around the center and the movement
of the center separately by a LIC visualization [5] and a 3D space-time
metaphor. In this paper, we make the following contributions:

• We give a theoretical comparison of the vortex cores in [33] with
existing approaches, in particular with the vortex cores in [14].
With this we theoretically confirm the similarity of [33] and [14]
for vortex cores shown by numerical experiments in [33].

• We show that the claim of [33], which states that their vortex
cores are in general pathlines, is not correct. This leads to the
statement that none of the existing approaches for vortex core
tracking is guaranteed to give corelines that are perfect pathlines.

• We introduce a new approach to compute vortex cores that are
guaranteed to be pathlines/ path surfaces. The main idea of our
approach is to consider all pathlines as potential vortex cores.
Instead of searching among all moving reference frames, we only
consider those that reproduce pathlines as vortex cores. The result
is the definition of a vortex deviation error (VDE) that indicates
for each pathline how suitable it acts as a vortex core.

• We show that the computation of VDE for a pathline is equivalent
to solving an Euler-Lagrange equation. We further show that after
a proper discretization, this can be computed by solving a sparse
linear system with a guaranteed unique solution.

• We introduce a new visual representation for moving vortex cores
that is based on a separate representation of the swirling behavior
and the moving core. For this, we used a careful combination of
streamlines, pathlines, and extremal lines. Contrary to existing
work [33], our representation is applicable in both 2D and 3D.
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1.1 Notation and basic properties
Formally, we denote a (2D or 3D) time-dependent velocity field as
v(x, t) = (u(x,y, [z, ]t),v(x,y, [z, ]t), [w(x,y,z, t)])T where the terms in
square brackets [ ] appear only in 3D. Further, let

∇v(x, t) = J(x, t) =

 ux uy [uz]
vx vy [vz]
[wx wy wz]

 , vt(x, t) =
∂v
∂ t

(1)

be the Jacobian and the time derivative of v, respectively. Let

v̇ = Jv+vt , J̇ =

 u̇x u̇y [u̇z]
v̇x v̇y [v̇z]
[ẇx ẇy ẇz]

=

(
∂J
∂x

,
∂J
∂y

,

[
∂J
∂ z

])
v+

∂J
∂ t

(2)
be the material derivatives of the velocity and the Jacobian, respectively.
In 3D, we denote the vorticity vector of v as

ωv =
(
wy − vz , uz −wx , vx −uy

)T
. (3)

We use the matrix operator A with the following function: in 2D, it
maps a scalar into an antisymmetric matrix (R→ R2×2), and in 3D it
maps a vector into an antisymmetric matrix (R3 → R3×3) by

A(α) =

(
0 −α

α 0

)
, A

(
(α,β ,γ)T

)
=

 0 −γ β

γ 0 −α

−β α 0

 . (4)

In particular, in 2D we introduce the rotation matrix

Q = A(−1) =
(

0 1
−1 0

)
. (5)

Following [20], we describe a moving reference frame as Killing field

w(x, t) = t+A(ω) ·x (6)

where t = t(t) is a time-dependent translation vector and ω = ω(t) is
the time-dependent vorticity of w. Note that w(x, t) is a Killing field
since ∇w(x, t)+∇w(x, t)T = 0. Note that ω is a scalar in 2D but a
3-vector ω = (ωx,ωy,ωz)

T in 3D. This means that a Killing field (6)
in 2D has 3 degrees of freedom (the 2-vector t and the scalar ω), but in
3D it has 6 degrees of freedom (the 3-vector t and the 3-vector ω) [40].

2 RELATED WORK

Vortex extraction is an active area or research [16]. Conceptually, there
are two analysis goals: scientists are either interested in the geometric
extent of a vortex, for which region-based methods are used, or they
care about the exact centerline around which fluid parcels are rotating,
for which line-based methods are used. The following section gives
a coarse overview of the recent developments. For a comprehensive
discussion, we refer to the survey of Günther and Theisel [16].

2.1 Region-based Vortex Extraction
Region-based methods commonly calculate scalar fields that are thresh-
olded appropriately to define regions with vortical behavior. Early and
common scalar fields are the imaginary part of the Jacobian’s eigen-
values [7, 41], the vorticity value [27], the Q-criterion [23], and the λ2
criterion [24]. More recently, objectivity shifted into focus. Haller et
al.’s Mz criterion [21], as well as the instantaneous and Lagrangian
averaged vorticity deviation [22] are recent examples.

2.2 Line-based Vortex Extraction
The first line-based methods have been developed for steady flows, in-
cluding the tracing of separatrices from swirling saddles in 3D flow [13]
and the predictor-corrector extraction of pressure valley lines [3]. Su-
judi and Haimes [37] characterized vortex corelines as lines along
which the flow vector aligns with the single eigenvector whose eigen-
value in not complex. Peikert and Roth [30] generalized this concept

by the parallel vectors operator, for which this was one among many
applications. Apart from generalizations of the expected shape to bent
corelines [35], several directions have been followed to extend the con-
cept to time-dependent flow [11, 39]. At that time, approaches reached
Galilean invariance [39] or rotation invariance [15].

2.3 Objectivization Methods
The growing interest in objective [21] feature extraction methods, was
founded on the observation that in time-dependent flow the motion of
reference frames and features is relative to each other. Thus, formerly
proving that a feature definition is invariant to observer motions en-
tails that the feature definition is able to successfully detect moving
features. The invariance class called objectivity is able to describe
temporally smooth rotations and translations of the observer [38]. Sev-
eral directions have been explored to make existing feature definitions
objective, which included the observation of the spin tensor in the
objective eigenvector basis of the strain-rate tensor [1, 9], the substi-
tution of the spin tensor by the spin deviation tensor [22, 28], and the
search for reference frames in which the observed vector field becomes
steady [14]. The latter has its roots in early theoretical considerations of
vortices being apparent as swirling streamlines in appropriately chosen
reference frames [29, 34], for which Günther et al. [14] proposed a
first numerical algorithm. Since then, several extensions have been
proposed that widened the invariance classes [2, 18], considered higher
dimensions [17], or operated on sets of few trajectories [10]. A no-
table step forward was the characterization of observer motions as
Killing fields [20], which paved the path to the treatment of curved
manifolds [32], and new lens-based exploration tools [33].

2.4 Vortex Cores as Pathlines
The concept of considering vortex corelines as pathlines goes back to
the early 90’s when many formal vortex definitions were laid out. We
follow the definition of Robinson [34], who stated “A vortex exists
when instantaneous streamlines mapped onto a plane normal to the
vortex core exhibit a roughly circular or spiral pattern, when viewed
from a reference frame moving with the center of the vortex core.”
Even though this understanding allows various definitions (i.e., choices
of the vortex core), it demands that the (unknown) vortex core is a path
line (in 2D). This can be seen by the following argumentation for the
2D case: Given is a velocity field v(x, t) and an unknown differentiable
curve c(t) acting as a vortex core. Further let ct(t) = dc(t)/dt be its
first derivative, i.e., its tangent. We observe v under a reference frame
moving with the vortex core. This reference frame is described by a
Killing field w(x, t) that is tangential to the vortex coreline, i.e.:

w(c(t), t) = ct(t). (7)

Concerning [34], the observed velocity field v−w exhibits a circular
or spiral pattern, i.e., it vanishes at the core itself:

(v−w)(c(t), t) = v(c(t), t)−w(c(t), t) = 0 (8)

Rearranging for w(c(t), t) and inserting this in Eq. (7) gives

v(c(t), t) = ct(t), (9)

meaning that c(t) is a path line. In 3D, a moving vortex core line can be
described as a parametric surface c(s, t) where s is the parametrization
of the core line at a time t. This means that considering t = t0 =
const describes the vortex core c(s, t0) as a parametric curve in s at
the time t0. The projection of the observed velocity into the plane
normal to the vortex core is (v−w)(c(s, t), t)− k · cs(s, t) with k =
((v−w)Tcs)/((cs)

Tcs). Then, the observation of circular or spiral
patterns in the projection perpendicular to the vortex core gives

(v−w)(c(s, t), t)− k · cs(s, t) = 0 (10)

Inserting Eq. (7) into Eq. (10) gives

v(c(s, t), t)− ct(s, t)− k · cs(s, t) = 0 (11)



which means that c(s, t) is a path surface, since v(c(s, t), t) is a lin-
ear combination of the surface tangents ct(s, t) and cs(s, t). Existing
definitions of vortex cores took this demand (vortex cores are path
lines) as soft constraint. This means that extracted vortex cores are
not path lines, but they were checked and filtered by their closeness to
path lines. The papers considering the Lagrangian assumption as soft
constraint include [2, 14, 18, 33, 39, 40]. Our paper is–to the best of our
knowledge–the first approach to take the Lagrangian property as hard
constraint: our vortex cores are perfect path lines.

3 COMPARISON OF EXISTING METHODS

Rautek et al. [33] introduced a new approach for the tracking of 2D
vortex cores and compared it with existing approaches. While the
comparison with standard methods like parallel vectors [35] gave supe-
rior results, the comparison with other advanced techniques [14] gave
less unique results. Several test data sets reveal slightly better results
for [33], others for [14]. Further, the difference of the results in [33]
and [14] is rather small for all data sets. Rautek et al. [33] concluded
that the new approach [33] can compete with [14].

For the sake of reproducibility and replicability, we conduct a new
comparison of the vortex cores in [33] and [14]. Contrary to the
comparison in [33], we do not run numerical tests on several data sets
but we provide a theoretical comparison and analysis of [33] and [14].
(We consider other approaches [2, 18] as follow-up work of [14], and
focus on the comparison of [33] and [14]).

Rautek et al. [33] and Günther et al. [14] follow a similar general
idea: perform unsteadiness minimization under a dynamically moving
area of interest in the flow domain. However, both approaches are
formulated in different languages: [14] describes the unknown moving
reference frame by a time-dependent rotation matrix and translation
vector, while [33] represents it by a Killing vector field. Further [14]
sets vortex cores as critical points of a vector field, while [33] applies
a multi-parameter numerical minimization on a scalar field. Note that
[33] applies a non-linear optimization in space and Killing-space, while
our approach applies a linear optimization over the whole time-domain
followed by a spatial non-linear optimization in space. To compare [14]
with [33], we have to bring them first into a common formulation.
Since [33] is defined in 2D only, we restrict the comparison to 2D.

3.1 Common setup
Given is a 2D velocity field v that is observed under the (unknown)
Killing field w in Eq. (6) with translation t = (a(t),b(t))T. Both [14]
and [33] consider the observed time derivative of v under the moving
reference system w as [20]

m(x,a, t) = vt −wt +∇v ·w−∇w ·v (12)

with the unknown parameters (a,b,ω) and their derivatives in a =
a(t) = (a,b,ω, ȧ, ḃ, ω̇)T. This means that m depends on the loca-
tion (x, t), the parameters a,b,ω of the Killing field, and their time-
derivatives ȧ, ḃ, ω̇ . With a we rewrite the Killing field w in (6) as

w(x,a,t) = W a with W = W(x) = (I ,−Qx , 0 , 0 , 0) (13)

where W is a (2×6) matrix. Both [14] and [33] consider the (norm of
the) observed time derivative not at a point x but over a R-neighborhood
UR(x) around x at every point x as

e1 = e1(x,a, t) =
1
A

∫
UR(x)

m(y,a, t)Tm(y,a, t) dy (14)

with A = area(UR(x)). Note that [33] uses the L1 instead of the L2
norm in Eq. (14). To make both approaches comparable, we assume the
same norm for both. Here we choose the L2 norm. Both [14] and [33]
compute the minimizer of e1 in a:

aopt = aopt(x, t) = argmin
a

e1(x,a, t) (15)

which gives an optimal Killing field wopt for every (x, t):

wopt(y,x, t) = W(y) aopt(x, t). (16)

Note that wopt describes not a single Killing field but a whole family.
In fact, every point (x, t) has its own optimal Killing field wopt(y,x, t),
i.e., ∇ywopt(y,x, t)+(∇ywopt(y,x, t))T = 0.

3.2 The differences of the approaches
Günther et al. [14] defined a moving vortex core cGu(t) as a tracked
critical point of the vector field

g = g(x, t) = v(x, t)−wopt(x,x, t), (17)

i.e., the vortex core fulfills g(cGu(t), t) = 0. Contrary, Rautek et al. [33]
introduced a second error function e2 = e2(x,a, t) = (v−w)T(v−w)
and defined a moving vortex core cRa(t) as a local minimizer in both x
and a of the final error function

e = e(x,a, t) = µ e1 + e2 (18)

for a certain positive weight µ . This means, the defining condition for
a moving vortex core in [33] is

∂ e(cRa(t),aopt(cRa(t), t), t)
∂ x

= 0. (19)

(To be precise, in [33] the optimization in a is done by setting ȧ = ḃ =
ω̇ = 0 and searching for the optimal a,b,ω only, i.e., by ignoring the
term wt in Eq. (12)).

3.3 Comparison
To compare the moving vortex cores cGu(t) [14] and cRa(t) [33], re-
spectively, we get from the definition of cGu(t) above at the location
(cGu(t),aopt(cGu(t), t), t)

∂ e1

∂ a
=

∂ e2

∂ x
=

∂ e2

∂ a
= 0 ,

∂ e1

∂ x
̸= 0 (20)

and in particular e2 = 0. For cRa(t) at location (cRa(t),aopt(cRa(t), t), t)
we have by definition of a local minimum

∂ e
∂ x

= µ
∂ e1

∂ x
+

∂ e2

∂ x
= 0,

∂ e
∂ a

= µ
∂ e1

∂ a
+

∂ e2

∂ a
= 0. (21)

This theoretical study shows that the locations of cGu(t) and cRa(t)
are in general not the same. In practice, there are further differences.
In [14], aopt is computed per grid point, and thus the critical point
search in Eq. (17) interpolates between different observers, meaning
that in ∂e2

∂x the e2 uses a spatially (but smoothly) varying a. In [33],
aopt is constant in the critical point search, making w a Killing field.
However, [33] minimize (21) numerically with an ADMM algorithm,
which ultimately favors one of the two terms. However, if aopt is con-
stant within UR(x), both methods converge to each other for µ → 0
or for e1(cGu(t),aopt(cGu(t), t), t) → 0. If we assume the neighbor-
hood UR(x) to be small enough to be covered by one reference frame,
e1(cGu(t),aopt(cGu(t), t), t) is expected to be close to 0. This gives that
in practice [14] and [33] give similar vortex cores. In particular, they
exactly coincide if v can be described as observation of a steady vector
field under a moving reference system and if aopt is constant within
UR(x). Note that this is the theoretical confirmation of the numerical
experiments in [33], which compared the vortex cores in [14] and [33].

4 PATHLINES AND VORTEX CORES

Ideally, vortex cores should be pathlines, i.e., they should be La-
grangian, as discussed in Section 2.4. Existing standard extractors
of vortex cores [2, 14, 18, 30, 35, 36, 39] produce vortex cores that are in
general not pathlines. In fact, the distance of a vortex core to a pathline
is often considered a quality measure for a vortex core [33].

Contrary to existing vortex core extractors, [33] claims that their
vortex cores are pathlines, and that deviations are due to numerical
errors that can be made vanishing by refining parameters of the numeri-
cal method. In particular, [33] claims that cRa(t) minimizing Eq. (18)
follows a particle trajectory in both v and the computed optimal Killing
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Fig. 2: Space-time visualization of the vortex coreline in Eq. (24) (thick
green line), with a pathline (thin green line) seeded from the white sphere
in the vector field in Eq. (22) for k = 0. On the left, forward integration in v
starting from (0,0,−2) gives a straight vortex core for −2 ≤ t ≤ 0 but then
starts swirling around (0,0). On the right, backward integration in v from
(0,0,3) gives the same in reverse. The deviation of the pathline from the
supposed vortex coreline, shows that Eq. (21) does not give a pathline.

field w. In the following, we show by a counter-example that this claim
is incorrect. We define the 2D COUNTER vector field

v(x,y, t) = e−k(x2+y2)

(
−4y

2x−40s3

)
(22)

with (x,y, t) ∈ [−0.5,0.5]2 × [−2,3], with k ≥ 0, and

s =
{

t (1− t) 0 ≤ t ≤ 1
0 else . (23)

Note that v in Eq. (22) is C∞ continuous in space and C2 continuous
in time. We show that for k = 0, v has a closed-form solution both for
cRa(t) and the optimal Killing field aRa(t):

Lemma 1. The curve

cRa(t) =
(

xRa(t)
yRa(t)

)
=

(
20s3

15s2 (2 t −1)

)
(24)

along with the optimal Killing field given by

aRa(t) =

aRa(t)
bRa(t)
ωRa(t)

=

−60s2 (2 t −1)
0
0

 (25)

is a local and global minimizer of Eq. (18) for the vector field in Eq. (22)
with k = 0. In particular it holds e(cRa(t),aRa(t), t) = 0.

Note that this solution neither depends on µ in Eq. (18) nor on
the size R of the neighborhood UR(x) in Eq. (14) as long as they are
positive. To prove Lemma 1, we have to show

e(xRa,aRa, t) = 0 (26)
∇xae(xRa,aRa, t) = 0 (27)
Hxa(xRa,aRa, t) is positive definite (28)

where ∇xae =
(

∂e
∂x ,

∂e
∂y ,

∂e
∂a ,

∂e
∂b ,

∂e
∂ω

)T
is the gradient of e in both the

space and the parameters of the Killing field, and Hxa = ∇xa(∇xae)
is the Hessian matrix of e. In the additional material, we show that
Eqs. (26)–(28) hold.

Lemma 2. The curve cRa(t) in Eq. (24) is not a pathline of v with
k = 0 in Eq. (22).

To show this, we apply basic differentiation rules to Eqs. (24) and
(22), which gives:

ċRa(t) =

(
−60s2 (2 t −1)

30s(5s−1)

)
(29)

v(cRa(t), t) = w(cRa(t), t) =
(
−60s2 (2 t −1)

0

)
(30)

Fig. 3: Conceptual illustration of observer motions (illustrated as heli-
copters) for our approach (blue) and previous methods [14,20,33] (green).
In previous methods, the observer motion w had three degrees of free-
doms: translation t = (a(t),b(t)) and rotation ω(t). The resulting observer
was not necessarily moving along pathlines. With our approach, the
translation of the observer motion wp is set to follow the pathline p(t) and
only the rotation ω(t) is unknown. This makes our approach inherently
Lagrangian. Here, the light blue trajectory, which is a vortex coreline, will
minimize the observed time partial (local minimum of VDE), while the
dark blue trajectory will not succeed in making the observed flow steady.

which are not equal, i.e., ċRa(t) ̸= v(cRa(t), t). Figure 2 illustrates the
vortex coreline that solves Eq. (21) showing that a pathline seeded on
the coreline cRa(t) leaves after some time.

5 NEW APPROACH - VORTEX DEVIATION ERROR

Lemma 2 showed that none of the existing approaches to extract moving
vortex cores is guaranteed to give pathlines. However, being a pathline
is one of the common understandings of moving vortex cores. Thus,
with this paper we present the – to the best of our knowledge – first
approach to extract vortex cores that are guaranteed to be pathlines.

Every moving particle (pathline) can act as vortex core under a suit-
ably chosen moving reference frame. In fact, if the origin of the frame
travels with the particle, it remains a static point in the observation.
Further, a swirling behavior around it can be observed when choosing
the rotation (vorticity) of the Killing field sufficiently large.

Because of this, we present a measure that checks for every pathline
p(t) of the velocity field v how suitable it is as vortex core. For this, we
introduce the vortex deviation error

VDEp0,t0,τ ≥ 0 (31)

that quantifies how suitable the pathline of v starting from (p0, t0)
integrated over a time interval τ is as a vortex core. The smaller
VDEp0,t0,τ , the better p acts as vortex core. A perfect vortex core is
characterized by VDEp0,t0,τ = 0.

We share the main idea of [14, 20] to consider the moving reference
frames (here represented by Killing fields) and search for minimizers
of the observed unsteadiness. However, the difference to existing
approaches is as follows: we do not consider all Killing fields but only
the subclass that have p as pathline. With this, we obtain two properties
in comparison to existing approaches:

• Vortex cores are guaranteed to be pathlines

• Our Killing field has less degrees of freedom to optimize com-
pared to existing approaches.

The concept and its difference to prior work is illustrated in Figure 3.

5.1 Definition of VDE
Given is a pathline p = p(t) of the velocity field v(x, t) in the temporal
domain t ∈ [tmin, tmax], i.e., p fullfills

ṗ = ṗ(t) =
dp
d t

= v(p(t), t). (32)

We define a Killing field wp around p as

wp = wp(x,ω, t) = ṗ+A(ω)(x−p) (33)

where ω = ω(t) is the unknown vorticity of wp.

Lemma 3. The curve p is a pathline of both v and wp.



input field v(x, t) pathlines p(t) integrate gp,up,Mp setup u,M solve for copt gradient descent visualize v−wp

Fig. 4: Overview of the numerical computation pipeline. Given is a time-dependent vector field v(x, t). First, calculate pathlines p(t) for each grid
point. At each grid point, spatially integrate gp,up,Mp using Eqs. (53)–(55). If regularization is enabled, also integrate (56)–(58). Next, compute u and
M of êp0 ,t0τ , which is detailed in the additional material. Then solve for the optimal observer rotation rates, which are stored along the pathline in copt
using Eq. (68). Afterwards, discard pathlines along which the observed vorticity is not high enough, see Eq. (71). To reach subvoxel accuracy iterate
a gradient descent using Eq. (72). Lastly, visualize the swirling around the vortex coreline in the optimal frame v−wp.

The property that p is a pathline of v is given by definition in Eq. (32).
The proof of p being a pathline of wp can be seen by evaluating wp
on the pathline, i.e., wp(p,ω, t) = ṗ. Note that the only degree of
freedom of wp in Eq. (33) is ω . This means that the number of degrees
of freedom to be cared for by optimization drops in 2D from 3 for a
general Killing field as in Eq. (6) to 1 – the unknown vorticity scalar.
In 3D, the number of degrees of freedom for a Killing field drops from
6 to 3 – the unknown vorticity vector.

Similar to [20], we consider the observed time derivative of v under
the reference frame wp as

mp = mp(x, t) = vt −wpt +∇v ·wp −∇wp ·v. (34)

Although it was not needed in practice, we provide a regularization that
ensures that the optimization obtains a unique solution:

mr,p = mr,p(x,ω, t) = v−wp. (35)

Note that a similar measure as in (35) is used in [20] for regularization
and in [26] as a full measure of interest. We compute the accumulated
observed unsteadiness error in a R-neighborhood around p:

ep(ω, t) =
1
A

∫
UR(p(t))

mp
T mp dx (36)

er,p(ω, t) =
1
A

∫
UR(p(t))

mr,p
T mr,p dx (37)

with A = area(UR(p(t))) being the area/volume of the R-neighborhood
UR around p. Note that ep, er,p describe the accumulated error in the
neighborhood of p(t) for every t. For the entire pathline, we consider
its integral over the temporal domain

êp0,t0,τ (ω) =
1
τ

∫ t0+τ

t0
ep + ε er,p dt (38)

with p0 = p(t0) and ε is a small number determining the influence of
the regularization. In all examples in the paper, we left ε = 0. We
search for the function ω(t) that minimizes êp0,t0,τ :

ωopt = ωopt(t) = argmin
ω(t)∈C1([t0,t0+τ])

êp0,t0,τ (ω). (39)

Note that Eq. (39) is a variational optimization in the unknown function
ω(t), as it contains both ω(t) and ω̇(t). Thus, we solve the Euler-
Lagrange equations [12], which are a necessary condition for the opti-
mum of Eq. (39):

δ êp0,t0,τ (ω)

δω(t)
=

∂ êp0,t0,τ (ω)

∂ω
− d

dt

(
∂ êp0,t0,τ (ω)

∂ω̇

)
= 0 (40)

As we will show later, the equation can be solved linearly upon dis-
cretization. With this we define the final vortex deviation error as

VDEp0,t0,τ = êp0,t0,τ (ωopt). (41)

5.2 Properties of VDE
Theorem 1. VDEp0,t0,τ is objective.

This follows directly from the objectivity of mp, mr,p in Eqs. (34)–
(35) that was shown in [20].

Theorem 2. VDEp0,t0,τ is Lagrangian.

This follows from Eq. (38), showing that the subject of optimization
is an integration over a whole pathline.

5.3 Numerical computation of VDE
VDE produces a scalar field. The core of the VDE computation is the
solution of the variational optimization in Eq. (39). To calculate vortex
corelines from VDE, we take the following steps:

1. computation of ep and erp on a discrete grid, cf. Eqs. (36)–(37).

2. discretization of êp0,t0,τ along pathlines seeded at grid vertices

3. solution of (39) as minimizer of a quadratic equation per pathline

4. apply filter criteria to pathlines and determine local minima

5. gradient descent of pathline seed to achieve subvoxel accuracy
In the following, we describe the steps in detail.

5.3.1 Computation of ep and erp

Eqs. (33)–(34) give that mp depends linearly on the unknowns ω, ω̇ .
This means that by writing the unknowns in a vector a by

a = a(t) = (ω(t), ω̇(t))T , (42)

we can rewrite mp in Eq. (34) and mr,p in Eq. (35) in the form

mp = v̇p −Mp a , mr,p = v̇r,p −Mr,p a (43)

Thereby, v̇p and v̇r,p have a simple form:

v̇p = v̇p(x, t) = Jṗ+vt − p̈ , v̇r,p = v̇r,p(x, t) = v− ṗ. (44)

In 2D, the matrices Mp and Mr,p are:

Mp = Mp(x, t) = (JQ∆x−Q∆v , −Q∆x) (45)
Mr,p = Mr,p(x, t) = (−Q · (x−p) , 02) (46)

whereas in 3D, the matrices Mp and Mr,p are:

Mp = Mp(x, t) = (JA(∆x)−A(∆v) , −A(∆x)) (47)
Mr,p = Mr,p(x, t) = (−A(x−p) , 03×3) (48)

with the following short-hand notations:

p̈ = p̈(t) = ∇v(p, t)v(p, t)+vt(p, t) (49)
∆x = ∆x(x, t) = x−p (50)
∆v = ∆v(x, t) = v− ṗ = v(x, t)−v(p, t) (51)



The proof that mp in Eq. (34) and mr,p in Eq. (35) are identical to
Eqs. (43)–(51) is provided in the additional material.

Inserting Eq. (43) into Eq. (36) gives that ep and er,p depend quadrat-
ically on the unknown ω, ω̇ and can therefore be written in the form

ep = gp −2uT
p a+aT Mp a , er,p = gr,p −2uT

r,p a+aT Mr,p a (52)

with the coefficients of the quadratic form being

gp = gp(t) =
1
A

∫
UR(p(t))

v̇p(x, t)Tv̇p(x, t) dx (53)

up = up(t) =
1
A

∫
UR(p(t))

Mp(x, t)Tv̇p(x, t) dx (54)

Mp = Mp(t) =
1
A

∫
UR(p(t))

Mp(x, t)TMp(x, t) dx (55)

and with the coefficients of the (optional) regularization term being

gr,p = gr,p(t) =
1
A

∫
UR(p(t))

v̇r,p(x, t)Tv̇r,p(x, t) dx (56)

ur,p = ur,p(t) =
1
A

∫
UR(p(t))

Mr,p(x, t)Tv̇r,p(x, t) dx (57)

Mr,p = Mr,p(t) =
1
A

∫
UR(p(t))

Mr,p(x, t)TMr,p(x, t) dx. (58)

5.3.2 Discretization of êp0,t0,τ

To integrate the measure over time along the pathline, we sample p(t)
regularly in time at the N +1 sample times

ti =
(

1− i
N

)
t0 +

i
N
(t0 + τ) (59)

for i = 0, ...,N, resulting in

pi = p(ti) , gi = gp(ti)+ ε gr,p(ti) (60)

ui = up(ti)+ ε ur,p(ti) , Mi = Mp(ti)+ ε Mr,p(ti). (61)

By further setting ai = (ω i, ω̇ i)
T, we get as discretization of Eq. (38)

êp0,t0,τ =
1

N +1

N

∑
i=0

(
gi −2uT

i ai +aT
i Mi ai

)
. (62)

Note that êp0,t0,τ in Eq. (62) depends quadratically on the unknowns
ω0, ...,ωN , ω̇0, ..., ω̇N . In 2D, we introduce the vector of unknowns

c = (ω0, ...,ωN)
T, (63)

and we assume that the sampling is dense enough such that the deriva-
tives can be computed by a linear operator

ċ = (ω̇0, ..., ω̇N)
T = Lc (64)

where L is an (N+1)×(N+1) matrix, which is listed in the additional
material. In 3D, the vector of unknowns stacks the three components
of the unknown vorticity vector:

c = (ω0[1], ...,ωN [1] , ω0[2], ...,ωN [2] , ω0[3], ...,ωN [3])T, (65)

and the derivatives are similarly given by a linear operator

ċ = (ω̇0[1], ..., ω̇N [1] , ω̇0[2], ..., ω̇N [2] , ω̇0[3], ..., ω̇N [3])T

=

L 0 0
0 L 0
0 0 L

c. (66)

This allows to rewrite Eq. (62) compactly in matrix form

êp0,t0,τ = g−2uTc+ cTMc (67)

where c contains the unknowns, and where g,u,M are computed from
information along and around the pathline. The additional material
provides the details on how to set up g, u, and M.
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Fig. 5: Visualization of the VDE field for varying integration durations τ.
With sufficiently long integration duration, VDE minima appear.

5.3.3 Solution of Eq. (39)
To finally solve the variational optimization in Eq. (39), we have to
solve Eq. (67) for the unknown c. This gives

copt = M−1u. (68)

Rather than computing the inverse of M, we perform a sparse Cholesky
decomposition and backsubstitute. From this, we obtain VDE as:

VDEp0,t0,τ = g−2uTcopt + cT
optMcopt (69)

= g−uTM−1u. (70)

Note that in M the consideration of the regularization (i.e., ε > 0)
guarantees that M has full rank. This is because er,p in Eq. (37) depends
only on ω and not on ω̇ . This means that the optimal ω for er,p can
be computed for each time step independently, resulting in a full-rank
system matrix as shown in [20]. In practice, it turned out that this
regularization was never needed, since the linear systems always had
full rank, and hence we kept ε = 0 in all examples in the paper.

5.3.4 Filtering
VDE produces a scalar field, in which local minima are of interest.
Fig. 5 displays the scalar field in the CYLINDER flow for different
integration durations τ , showing how the minima become more distin-
guishable. To restrict the VDE minima extraction to vortex corelines
in an objective manner, we require the instantaneous vorticity devia-
tion [22] to be sufficiently high for all vertices along the pathline:

ωmin ≤
∥∥∥∥ωv(ti)−

1
|U |

∫
U

ω(y, ti) dy
∥∥∥∥ , ∀i ∈ {0, . . . ,N} (71)

where U is the spatial domain of the data set. The threshold ωmin
thereby acts as swirling strength criterion. Increasing the threshold
limits the extraction to vortices that exhibit a sufficiently strong rotation
rate. Figure 6 shows the impact of the filter.

5.3.5 Gradient descent
Calculating VDE on a discrete grid limits the accuracy of the extracted
vortex corelines to the spacing between grid points. To reach subvoxel
accuracy, we take the local minima on the grid as seed points and
perform a gradient descent optimization of the seed point p0:

pi+1
0 ≈ pi

0 −h ·
∂ êp0,t0,τ (ωopt)

∂p0
(72)

The required partial derivatives are estimated with second-order central
differences. In all data sets, we performed 10 iterations of gradient
descent, which proved sufficient to converge, since the initial guess is
close to the optimum, namely within the grid spacing, see Fig. 7.
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Fig. 6: Visualization of the impact of filtering at different integration dura-
tions τ. Regions are masked out if the instantaneous vorticity deviation
is below ωmin = 2 at any point along the pathline. Valid regions are visible
early, but they become more stable with longer integration durations.

Fig. 7: Impact of gradient descent: before (green), after (white).

6 VISUAL REPRESENTATION

The development of a visual representation for moving vortex cores
is challenging because it requests the simultaneous encoding of the
following features and properties.

• Movement of vortex cores: vortex cores move over time on tra-
jectories (pathlines). In addition, moving vortex cores in 3D may
change their shapes.

• Swirling around vortex cores: finding a visual representation
of the swirling behavior around the vortex cores is crucial for
understanding the vortical behavior.

Existing approaches to extract vortex cores [2, 14, 18, 30, 35, 36, 39]
focus on the visual representation of the core movement. Recently,
Rautek et al. [33] presented an approach to represent both aspects in
the following way: the movement of a 2D vortex core is represented by
a 3D space-time curve, and the swirling behavior is shown by a 2D LIC
of v−wopt . Unfortunately, the approach in [33] does not carry over to
3D flows because of the following reasons: First, moving 3D vortex
cores are surfaces in 4D space-time, for which no straightforward visual
representation exists. Second, while 3D LIC approaches exist, their
applicability in comparison to 2D LIC is strongly limited due to reasons
of perception.

Our visual representation is a combination of several characteristic
curves: streamlines, pathlines, and extremal lines. With this, our
approach is applicable in both 2D and 3D.

2D View We represent a local minimum of VDEx,t0,τ in x as a
white point p0. Further, we represent the pathline p(t) starting at
(p0, t0) over the time interval [t0, t0 + τ] as a blue curve – the moving
vortex core. We sample the time interval [t0, t0 + τ] regularly at nt
sample points ti with i = 1, ..,nt , and compute streamlines of the field

v(x, ti)−wp(x,ωopt , ti) (73)

seeded around the point (p(ti), ti) using [25]. These streamlines are
color coded according to time ti on a yellow-orange-red color scale, and
they encode the swirling direction around the vortex core at the times
ti by an increasing line width. For context, we visualize the (filtered)
field VDEx,t0,τ in the background using a gray scale.

3D View We extract an extremal curve of VDEx,t0,τ using [8],
depict it as blue curve (the vortex core at t0), and sample it at nx points
p0, j for j = 1, ...,nx. Similar to the 2D case, we consider the pathlines
p j(t) starting at (p0, j, t0), and visualize streamlines of the vector field

v(x, ti)−wp j (x,ωopt , ti) (74)

seeded around the point (p j(ti), ti), for i= 1, ...,nt , j = 1, ...,nx. Similar
to the 2D case, these streamlines represent the swirling behavior around
the vortex cores at time ti, and are color coded according to ti. For
context, we additionally show a volume rendering of the (filtered) field
VDEx,t0,τ in the background. In this paper, we set nt = 4,nx = 10.

7 RESULTS

In the following section, we demonstrate our method on several 2D and
3D vector fields, we study the impact of the parameters, we provide
detailed performance measurements for all examples shown in the
paper, and we discuss the properties and limitations of our method. We
published a reference implementation [19] of VDE for the CYLINDER
flow with which Fig. 5 can be reproduced.

7.1 Counter Example 2D
In Section 4, we constructed a counter example to show that vortex
corelines of Rautek et al. [33] are not necessarily pathlines. In Fig. 8,
we show results of our method on the COUNTER data set, using our
proposed 2D view (left) and a space-time visualization (right). The
light blue line shows the vortex coreline of our method for t0 =−1.5,
τ = 4, and k = 1. The dark blue pathline is indeed swirling around the
vortex coreline, but due to the slow rotational speed, this is difficult to
recognize, especially since the vortex is moving itself. In contrast, the
swirling streamlines display the rotating motion in the observed vector
field at selected time steps well. In contrast to Rautek et al. [33], our
vortex coreline is indeed a pathline of the flow, along which swirling
motion is encountered.

7.2 Cylinder 2D
The CYLINDER data set is a frequently used vortex extraction bench-
mark, since the path of vortices is well-understood. The flow was
simulated with Gerris flow solver [31] and contains a von-Kármán
vortex street with Reynolds number 160. Vortices are periodically shed-
ding from the circular obstacle. The data set was made available by
Günther et al. [14]. The results of our method are shown in Fig. 9 for
different neighborhood regions R, which are measured in voxels. The
background shows the filtered VDE slice, on which the local minima
are displayed from which pathline integration is started, resulting in
the light blue vortex corelines. The streamlines in the observed steady
vector field, display for four different time steps the swirling motion
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Fig. 8: Visualization of the vortex coreline using our method in the
COUNTER flow. On the left, a 2D view is shown which displays swirling
streamlines at selected time slices along the vortex coreline (light blue).
The streamline color encodes time. To demonstrate the swirling, a nearby
pathline (dark blue) is seeded nearby, which remains close and exhibits
swirling motion. On the right, a space-time visualization of this data set
is shown, in which time is mapped to the vertical axis.
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Fig. 9: Vortex coreline visualization using VDE in the CYLINDER2D flow. Here, vortices are known to move with almost equal speed from left to right,
i.e., they perform near-Galilean transformations. To visualize the swirling motion, we display streamlines in the observed vector field v(x)−wp(x)
along the vortex corelines at time steps chosen such that visual clutter is avoided. Streamlines with the same color exist at the same time. The VDE
slice is calculated for t0 = 12 and τ = 2 for varying neighborhood sizes. The required minimal IVD ωmin was set to 2 to limit the search for VDE minima
to regions within the vortices. Vortex corelines are detected for all neighborhood sizes. The larger R the higher is the absolute time partial residual.

around the vortex corelines. For small choices of R, the value range
is generally lower than for the fitting of an observer to a larger region.
If R is high enough, the VDE minima are well visible. In Fig. 5, we
displayed VDE for different integration durations and in Fig. 6, we
demonstrated the output after application of the instantaneous vorticity
deviation filter. See the supplemental video for varying start times t0.

7.3 Boussinesq 2D
A more complex example is the BOUSSINESQ flow, which was likewise
simulated with Gerris flow solver [31]. It contains a flow rising from a
heated cylinder. The data set was provided by [14]. In this flow, small
vortices are generated, which even spiral around each other. To capture
those intricate details, small neighborhood windows are required. In
Fig. 10, we provide a parameter study of the instantaneous vorticity
deviation threshold ωmin, which we apply to limit the search for local
VDE minima. In the figure, the threshold is increased from left to right.
Two things are noticeable: (1) As the threshold increases, weak vortices
are gradually removed. (2) The result is rather threshold-insensitive for
higher values of ωmin.

7.4 Square Cylinder 3D
The SQUARE CYLINDER flow of Weinkauf et al. [6,39] contains a three-
dimensional von-Kármán vortex street. The vortex axes are almost
orthogonal to the flow direction, which makes this a case in which
multiple time steps can be illustrated well without occlusion. Fig. 1
shows results of our approach. The vortex cores sweep over time along
a path surface. At selected timelines, the streamlines of the optimal
frame are visualized, which conveys the rotating motion.

7.5 Vortex Rings 3D
Lastly, Fig. 11 shows two VORTEX RINGS that rise in a buoyant fluid
flow. The upper vortex retains its ring shape over time, while the lower
vortex core breaks down into a horseshoe vortex. Since the path of our
vortex cores are the result of a path surface integration, vortex cores are
easy to track over time, despite the vortex breakdown. The display of
swirling streamlines in future time steps conveys the path of the vortex
corelines and indicates the swirling motion that is present around them.

7.6 Performance
In the following, we list in Table 1 the parameters and the performance
measurements for all data sets shown in the paper. The measurements
have been taken on a workstation with an Intel Core i9-10980XE CPU
with 3.00 GHz. Where the bottleneck occurs depends on the parameters
and the resolution. The experiments on the CYLINDER have shown that

the spatial integration of gp, up, and Mp in Eqs. (53)–(55) becomes
costly for large neighborhood regions R. We have parallelized over
the grid points, but for each grid point we loop sequentially over its
neighborhood region. An acceleration with summed area tables similar
to [14] is not straightforward, since each grid point has its own pathline
around which the spatial integrals are formed. The experiments on
the CYLINDER flow have also shown that the cost for setting up and
solving the linear system is increasing with the number of pathline
sample points, as well. In general, the complexity of linear solvers
increases cubicly in the number of unknowns. The extraction of ex-
tremal structures and the gradient descent refinement are negligible in
comparison. In the 2D flows, we obtained results at the order of a few
seconds. Since the 3D flows have more voxels, the computation time
increased to the order of minutes.

7.7 Discussion
Locality of Optimal Observers Our method calculates unsteadi-

ness minimizing reference frames successfully only along critical paths
in the observed flow, e.g., along vortex corelines. In all other regions of
the domain, the optimal near-steady observer does not necessarily fol-
low along pathlines. Thus, if the near-steady flow should be observed
elsewhere in the domain, then previous reference frame optimization
methods [14, 20, 33] would be a suitable choice.

Parameters Our method depends on three key parameters: the
start time t0, the integration duration τ , and the size of the neighborhood
region R. All three have been studied either in the paper (τ and R) or
in the supplemental video (t0). Further, the numerical parameters
(integration step size, sampling rate along pathline) have to be chosen
with care to avoid numerical errors. This, however, is standard practice
in flow visualization and is likewise done for any other metric based on
particle paths, such as FTLE.

Temporal Aggregation VDE is inherently a Lagrangian metric.
Lagrangian metrics have the disadvantage that they aggregate informa-
tion about a particle’s experience over time into a single number. This
entails that VDE might exhibit a high value even though the vorticity
is not high at all time steps. In fact, VDE cannot tell when vortices
dissipate. VDE has this limitation in common with other Lagrangian
metrics. For example, FTLE does likewise not express when (and
where) a separation has occurred in a given time interval.

Temporal Stability A major benefit of Lagrangian methods is their
very high temporal stability, which is visible in the supplemental video.
Our vortex corelines are guaranteed to move along particle paths. Thus,
vortex cores are sweeping smoothly through the domain.
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Fig. 10: Parameter study of the instantaneous vorticity deviation threshold ωmin in the BOUSSINESQ flow. The threshold is applied to remove vortices
that exhibit too low swirling strength throughout the time interval. In the image center, nearby vortices can be seen to rotate around each other.
Throughout the domain, vortices exhibit different movement directions, which is why a different observer needs to be searched per vortex coreline.

Data set Figure Resolution R t0 τ N +1 ωmin gp,up,Mp u,M,copt coreline
CYLINDER Fig. 5/6(a) 640×80 11×11 12 0.1 10 0/2 0.12 0.20 –
CYLINDER Fig. 5/6(b) 640×80 11×11 12 0.5 50 0/2 0.58 0.57 –
CYLINDER Fig. 5/6(c) 640×80 11×11 12 1 100 0/2 1.16 0.76 –
CYLINDER Fig. 5/6(d) 640×80 11×11 12 2 200 0/2 2.33 1.27 –
CYLINDER Fig. 5/6(e) 640×80 11×11 12 3 300 0/2 3.49 2.02 –
COUNTER Fig. 8 50×50 11×11 −1.5 4 400 0 0.02 0.40 0.28
CYLINDER Fig. 9(a) 640×80 5×5 12 2 200 2 0.56 1.33 1.41
CYLINDER Fig. 9(b) 640×80 11×11 12 2 200 2 2.32 1.32 1.43
CYLINDER Fig. 9(c) 640×80 21×21 12 2 200 2 8.04 1.31 1.55

BOUSSINESQ Fig. 10(a)-(e) 150×450 11×11 10 2 200 0/1/2/4/8 3.22 1.96 4.99
SQUARE CYL. Fig. 1 192×64×48 11×11×11 64 5 50 0.2 67.18 222.75 12.3

VORTEX RINGS Fig. 11 94×190×94 11×11×11 3.78 0.67 20 2 265.42 43.02 9.39

Table 1: Performance measurements for all data sets in seconds. The parameters are the size of the neighborhood R, start time t0, integration
duration τ, number of vertices along pathline N +1, and the instantaneous vorticity deviation threshold ωmin. The timings are listed for the spatial
integration of gp,up,Mp (which are needed for ep), the integration of u, M along the pathline and solving for copt which optimizes êp0 ,t0 ,τ , and lastly for
the search for the local minima/valley lines of VDE including the gradient descent to reach subvoxel accuracy.

0 17

Fig. 11: Visualization of two VORTEX RINGS. The upper vortex retains its
ring shape, while the lower vortex breaks into a horseshoe vortex.

8 CONCLUSIONS

In this paper, we discussed the theoretical similarities of recent objec-
tivization methods [14, 33] and we have shown that neither of them is
guaranteed to extract vortex corelines that are Lagrangian. Afterwards,
we proposed the first Lagrangian vortex coreline extraction algorithm,
which optimizes for the optimal observer rotation for observers that are
restricted to move along pathlines. The optimal rotation rate is solved
variationally as function along the entire pathline, for which we derived
a linear system. To depict the swirling motion around the vortex cores
in 2D and 3D flow, we proposed to visualize the swirling motion using
streamlines in the observed vector field at selected time steps. We
demonstrated the approach in several 2D and 3D vector fields.

At present, the algorithm is implemented on the CPU with OpenMP
parallelization. In the future, it would be imaginable to parallelize the
computation on the GPU. Further, the placement of streamlines could
be optimized to convey the rotating motion while reducing occlusions.
We plan to investigate how the integration duration is tied to the time
scale and how the neighborhood size is tied to length scales of vortices.
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