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Locally Adapted Reference Frame Fields
using Moving Least Squares
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Fig. 1: Turbulent flow contains many small-scale vortices that are separated by transport barriers (FTLE). Prior reference frame
optimizations [13] (baseline) cannot resolve the details, since reference frames are optimized for uniformly weighted neighborhoods.
With our method, the neighborhood weighting is guided by FTLE, allowing the detection of small-scale vortices.

Abstract—The detection and analysis of features in fluid flow are important tasks in fluid mechanics and flow visualization. One recent
class of methods to approach this problem is to first compute objective optimal reference frames, relative to which the input vector field
becomes as steady as possible. However, existing methods either optimize locally over a fixed neighborhood, which might not match
the extent of interesting features well, or perform global optimization, which is costly. We propose a novel objective method for the
computation of optimal reference frames that automatically adapts to the flow field locally, without having to choose neighborhoods
a priori. We enable adaptivity by formulating this problem as a moving least squares approximation, through which we determine a
continuous field of reference frames. To incorporate fluid features into the computation of the reference frame field, we introduce the
use of a scalar guidance field into the moving least squares approximation. The guidance field determines a curved manifold on which
a regularly sampled input vector field becomes a set of irregularly spaced samples, which then forms the input to the moving least
squares approximation. Although the guidance field can be any scalar field, by using a field that corresponds to flow features the
resulting reference frame field will adapt accordingly. We show that using an FTLE field as the guidance field results in a reference
frame field that adapts better to local features in the flow than prior work. However, our moving least squares framework is formulated

in a very general way, and therefore other types of guidance fields could be used in the future to adapt to local fluid features.

Index Terms—Scientific visualization, unsteady flow, reference frame optimization.

1 INTRODUCTION

In the real world, the intricate dynamics of fluids under motion are
notoriously difficult to comprehend. Only through flow visualization
can vortices, jets, and barriers become visible, for example, through
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the injection of smoke or dye. In computational fluid dynamics, flow
visualization plays an equally important role, enabling a deeper analysis
of transport, settling, and mixing. Currently, the complexity of time-
dependent fluids still requires the development of novel approaches
that allow the effective exploration of coherent structures and their
evolution [6]. A key requirement in this endeavor is that analysis
approaches should always lead to the same conclusions, regardless of
how the fluid flow is observed. This led to the definition of a formal
property, called objectivity [53], which refers to the invariance of a
measure under temporally smooth rotations and translations of the
reference frame. One such objective approach is the search for a field
of new observers that move with the structures in the fluid, such that
their apparent flow becomes as stationary as possible [13,20].
However, existing local reference frame optimization approaches
have made one key assumption: To calculate the optimal observer
at a given location, these methods assumed that all flow structures
move coherently within a finite-sized neighborhood centered at the


https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/
https://orcid.org/0000-0003-2144-3794
https://orcid.org/0000-0003-4821-7404
https://orcid.org/0000-0002-3020-0930
https://orcid.org/0000-0003-1239-4871

location. The neighborhood was typically assumed to be rectangular
or circular, and its size effectively determines the resolution at which
fluid structures can be resolved. Consequently, the approach has been
applied mainly to fluid flows with a low to moderate Reynolds number
(Re < 320) [2], which in fluid dynamics is considered laminar flow. The
more turbulent the flow, the higher the likelihood that nearby small-
scale vortices move in different directions, which cannot be captured
by prior work.

In this paper, we propose the first reference frame optimization that
is specifically targeted at 2D turbulent flow. To this end, we present a
novel adaptive neighborhood weighting that adaptively adjusts to the
transport barriers of the flow field. The transport barriers, known as
hyperbolic Lagrangian coherent structures (LCS), are approximated by
calculating the finite-time Lyapunov exponent (FTLE) [48] in forward
and backward time, which gives rise to a scalar field. Using FTLE, we
derive a guidance field that is sampled and lifted to obtain a curved
manifold adapted to local flow features, giving rise to valleys and
plateaus corresponding to coherent flow regions, and ridges acting as
barriers separating different regions.

We formulate the reference frame optimization as a general moving
least squares (MLS) approximation problem, which provides a strong
mathematical foundation for our approach. The guidance field is used
to provide a distance measure for the MLS approximation. This dis-
tance determines the weight for the neighborhood samples during frame
optimization at a given point, adjusting to one coherent structure at a
time. This idea is illustrated in Fig. 2. Prior work assumed a coherent
flow motion within the neighborhood (uniform weighting) during local
optimization, which prevents existing techniques from detecting small-
scale vortices moving in different directions. Our technique adapts to
the coherent region around a given point by adjusting the weighting
with the distances provided by the guidance field. With this, we lay the
foundation for the application of reference frame optimization in a vast
number of fields, ranging from engineering (aerospace, turbomachin-
ery) [45], atmospheric sciences (hurricane and ocean eddy genesis) [9],
to biomedical applications (hemodynamics in aneurysms) [38] and
more. Across all these fields, the ability to extract vortex coreline
geometry is paramount as it enables a quantitative study of the fluid
dynamics, including the genesis and lifetime of vortices, as well as
their co-location with structures that they dynamically interact with.

As shown in Fig. 1, our novel reference frame optimization using
moving least squares detects small co-rotating vortex pairs that are
undetected by existing reference frame optimization methods. We
evaluate our method for both laminar and turbulent fluid flows.

2 RELATED WORK
2.1 Feature Extraction in Unsteady Flow

Time-dependent flows are complex spatially and temporally varying
dynamical systems whose evolution is governed by fluid flow structures,
such as vortices, jets, and barriers. In fluid mechanics, Lagrangian co-
herent structures (LCS) [24] describe boundaries of coherent motion in
the fluid. The term Lagrangian indicates that those coherent structures
are formed from pathlines, i.e., a pathline is either part of an LCS or
it may not cross an LCS, which gives rise to a domain partition into
coherent regions. Coherent regions can also be formed by so-called
coherent sets [11], which are sets of trajectories with similar behavior.
In the literature, three types of LCS are commonly distinguished: el-
liptic LCS describe the boundaries of vortices, for example, through
inhibition of vorticity diffusion, parabolic LCS denote the centerline of
jets, which exhibit minimal shear within a regime of otherwise shearing
flow, and lastly, hyperbolic LCS act as attracting and repelling fluid
structures that share some resemblance with separatrices known from
the topological analysis of stationary flow [55]. In fact, the extension
from stationary to time-dependent vector field topology was subject to a
significant amount of research. Critical points (also known as stationary
points) [25,26] have been tracked [59], for example, with feature flow
fields [51], which turn out to be estimators of Galilean vortex trans-
port [2]. The paths of vortices have been found as maxima in vorticity,
locations of vanishing acceleration [30], and critical points in stationary
reference frames [2], to name a few. The paths of saddles have been
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Fig. 2: lllustration of local reference frame optimization using uniform and
adaptive weighting. Neighborhoods enclosing a single vortex (blue) lead
to successful optimization for both uniform and adaptive weighting. While
uniform weighting in neighborhoods enclosing multiple vortices (red)
works for coherent vortex motion (a), it fails if vortices move in different
directions (b). Our adaptive weighting constrains the optimization to
coherent regions limited by the transport barriers (green line).

found through the intersection of hyperbolic LCS, and locally via distin-
guished hyperbolic trajectories (DHTs) [5,27,28]. In streakline-based
vector field topology [47,54], streaklines, emanating from intersections
of hyperbolic LCS, are the counterpart to separatrices of stationary
flow. Within the flow visualization literature, further interesting fluid
structures have been identified, such as recirculations [58] or attach-
ments/detachments through splats and anti-splats [40]. For further
discussions, we refer the reader to recent surveys on topology-based
and feature-based flow analysis [6, 12, 16].

Finite-time Lyapunov Exponent (FTLE) fields. In flow visual-
ization, Lagrangian coherent structures (LCS) are commonly approxi-
mated as ridges of the finite-time Lyapunov exponent (FTLE) field [48],
which measures the separation of nearby-released tracer particles after
a finite time interval T as

Lln vV Anax (C(x)). (1)

T
Gto (.X) = ‘T‘
Here, 1 is the initial time for the integration, T (positive or negative) is
the integration time, and A4, (C) is the largest eigenvalue of the right
Cauchy-Green deformation tensor C, computed from the gradient of
the flow map at x. For a vector field v, let # — x() be a pathline

t

x(t) = xo +. v(x(7),7) dr, (2)

with initial position x(7) = x¢. Then, the flow map and its gradient are

aT

The Cauchy-Green tensor is then given by C = FTF [48]. To simplify
the notation, for given 79, T, we denote the FTLE field as o (x). The
flow map gradient F has been approximated by finite differences [22],
and locally through linearization of the flow map via matrix expo-
nentiation of the Jacobian [29]. We refer to Kuhn et al. [33] for a
benchmark of computation methods. FTLE fields have been computed
adaptively [4,46], interactively [3], and were rendered using a Monte
Carlo method [1, 14]. The extraction of FTLE ridge lines has been
approached by tracking through space-time [49, 57].

2.2 Reference Frame Optimization

In recent work on flow analysis, visualization, and feature extraction
in unsteady flow, methods that are invariant to the choice of reference
frame have become increasingly important. Early approaches focused
on Galilean invariance (i.e., invariance under equal-speed translations
of the reference frame) to account for uniform background motion. Ob-
Jectivity, introduced in continuum mechanics by Truesdell and Noll [53]
and further elaborated by Haller [23], formalizes the requirement that
flow features remain the same under any smooth time-dependent rigid
transformation of the observer. In an objective setting, transformations
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Fig. 3: Pipeline overview. Given a 2D unsteady input flow field v(x,?), x € U, we compute the FTLE scalar field o,g (x) and use it as a guidance
field g (Eq. 19). The guidance field defines a height field manifold G (Eq. 20), on which the straight line between two grid points x,x; € U (red line)
becomes the curved arc induced on the height field G between the points %,%; € G (red arc). The induced distances d, (Eq. 21), defined as the
induced arc length, determine the weights 6 (Eq. 15) for the moving least squares optimization (opt) (Eqg. 25), which automatically adapts the local
neighborhoods to the Lagrangian coherent structures of the input flow field, producing a locally adapted smooth reference frame field x — f(x), x € U.

include both translations and rotations that may vary over time. Con-
sequently, feature definitions that are objective do not depend on how
the flow is observed, making them better suited for analyzing complex
unsteady fluid phenomena. Vortex definitions that are not objective
may yield inconsistent or observer-dependent results.

Classic work on vortex criteria [23, 37] highlighted that purely
Galilean-invariant definitions can fail for more general observer mo-
tions, whereas purely rotating frames (e.g., rotation-invariant [15]) can
be insufficient if the flow itself has more complex motion. A powerful
approach for objective reference frame optimization is to find a suitable
time-dependent local reference frame that minimizes the unsteadiness
of the observed flow. Giinther et al. [13] proposed a local transforma-
tion at each point such that the time derivative of the flow is minimized.
The solution in a local neighborhood forms the observed field. This
yields objective vortex measures since both velocity and its derivatives
become frame-independent [2, 13]. Kasz4s et al. [31] optimize for the
observer that is most similar to the input flow field in the L; norm.
Local optimization has also been exploited to make classical criteria
(such as A, vorticity extrema, or Sujudi-Haimes) objective [13, 50].
Global solutions for nearly-rigid fields of observers, given by a global
observer velocity field, have been proposed [20,43].

Further generalizations increased the degrees of freedom [2, 18],
modeled the motion of finite-sized particles [17], restricted observers
to follow pathlines [19], and fitted observers to sets of trajectories [10].
Using machine learning, reference frames have been optimized non-
objectively with CNNs [32] and objectively with transformers [61].

The extraction of rigid reference frames for interactive visualization
and vortex extraction has been presented [44, 60], and local reference
frames have been used to improve the extraction of LCS in 2D unsteady
flow [62]. The starting point of our method is the reference frame
optimization method proposed by Giinther et al. [13]. This method
estimates a local reference frame transformation for each point in
the domain, such that the observed field is as steady as possible, i.e.,
the norm of the transformed time derivative is minimized. For each
point, the minimization is computed in a neighborhood around that
point, assuming that the reference frame transformations are constant
in this neighborhood. One drawback of this approach is that all points
in the pre-defined neighborhood have an equal contribution to the
solution. We extend this method to allow for adaptive neighborhoods
by formulating the problem as a moving least-squares approximation,
with a carefully designed distance measure determined by a scalar
guidance field that separates the fluid domain into coherent regions.

2.3 Moving Least Squares (MLS) Approximation

The properties and approximation power of moving least squares (MLS)
methods for function approximation and interpolation were originally
investigated by Lancaster and Salkauskas [34], and extended in many
follow-up works, for example by Levin [35]. In particular, the sta-
bility and robustness of the basic method have been investigated and
improved, such as in robust MLS [8] or stable MLS [36]. Introductions
are given in the books by Fasshauer [7] and Wendland [56], respectively,

as well as in the short overview introduction by Nealen [39].

MLS computes a smooth approximating function that results from
performing a local polynomial fitting in the weighted least-squares
sense at each output position x. Given parameters p, determining a poly-
nomial in several variables, the optimal parameters p(x) are computed
using a local weighted least squares fit at each point x, approximating
an input function known only at discrete data sites (samples) x;, with
corresponding function values f;. The approximating function f(x)
is determined at each x by optimal parameters p(x). To emphasize
the parameter dependence, we can write the approximating function
as fp(x). At each point x, MLS solves for the optimal parameters

px) = argminp/ Z (fpr (xi) ff,-)2®(x,x,-). )

icl(x)

The local weighted least squares approximation considers all samples
from an index set /(x), and the weight of each sample x; is determined
by a weighting function ®. The properties of ® determine the smooth-
ness of the global output function f(x), corresponding to the parame-
ters p(x). Often, ®(x,x;) = 0(||x — x;||), and the index set /(x) depends
on the position x, e.g., it contains all indices i such that || x —x;|| <r € R.

3 METHOD

The input to our method is an unsteady flow field v(x,¢), for which
we compute a smooth field of optimal reference frames f(x,7). An
overview of the approach is given in Fig. 3. First, the FTLE field
o/ (x) is calculated, which is used to define a height field. The goal
is to compute the reference frame only from sample points that are on
the same side of a ridge. To determine whether a sample point is on
the other side of a ridge, we integrate the walking distance dg(x,x;)
from the center point x of the neighborhood window to the sample
point x;, which is then mapped via a transfer function to a weight 6
that is included into the reference frame optimization. As in previous
work [13] on optimal reference frames, we compute our optimal frame
field for each timestep ¢ individually, and thus we omit time 7 to simplify
the notation f(x):= f(x,¢) assuming the time 7 is known from context.
The time parameter ¢ should be understood to be included implicitly.

3.1

For a given 2D unsteady input vector field v, given on the spatial
domain U C R?, our goal is to compute a smooth reference frame
field f. We define the field f as a smooth 6D parameter vector field

Reference Frame Fields

f:U—>RS,

x— f(x). ©)

The frame parameters f(x), at a point x € U, are given by a vector

fx)=(a b ¢ a b c')T(x). (6)
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Following Zhang et al. [60], these six parameters determine a reference
frame as a Killing vector fieldw ¢ (y) on U, y € U, and its corresponding
Eulerian time derivative dw ¢ (y)/dt, via the linear combinations

wy(y) =aei(y)+bex(y) +ces(y), @)
aa#(y):ael(y)+bez(y)+ées(y)~ ®)

In the above, the subscript f denotes that the Killing field y — w ¢ (y)

is completely determined by a single given parameter vector f € RS.
As Zhang et al. [60], we use the three basis Killing fields given by

1 0 -F0) -y
a0 =(y) e =(}) e =("H0 ). ©
Here, (%,¥)(y) are the Cartesian coordinates of the point y € U, and the

coordinates (%,,9,,) refer to the center of mass of the domain U.
From Eqgs. 7 and 9, we also immediately get the velocity gradient

vos)= (0 )

It is crucial to note that any Killing field w ¢ is determined by a single

10)

parameter vector f € R®, which we choose from a fixed position x in
the frame field x — f(x). That is, given a position x we determine f :=
f(x), and then f determines the entire field w . To make this more
explicit, we refer to positions in the domain U as either points x € U
or y € U, depending on context, to differentiate between the field of
frame parameters x — f(x) and a particular Killing field y — w ¢ (y)
corresponding to just one 6D frame parameter vector f, respectively.
Nevertheless, positions x and y refer to points in the same domain U.

In this way, because in our setup each vector f(x) at a single posi-
tion x € U defines a Killing field y — w ¢ (y) over the whole domain U,
instead of being limited to just a single reference frame, as one Killing
field w, we thus define a whole field of reference frames.

For the direct evaluation of Killing vector fields w g using Eq. 7 with
parameters f, and the basis Killing fields e; given in Eq. 9, at each
sample point y; € U we define the corresponding 2 x 3 matrix

N — 10 7(5\’()21')7}7771)
woa=(o 1 6 i) v
The points y;, i € [1,N], are the spatial positions of N grid points y; =
x; € U, on which the input vector field v is given (i.e., sampled).

Using the matrices W(y;), for any 6D parameter vector f, we com-

pute the corresponding Killing field and its time partial as

wy(y)=( W) [0)f, (12)
Jw
500 = (0| W0 ) S (13)

Like the matrices W, the zero matrices 0 each are of size 2 x 3.

3.2 Moving Least Squares Approximation

Using moving least squares, we estimate the reference frame param-
eters f(x) at any position x € U using a local weighted least squares
approximation, where the weighting is determined by a function 6(d).
However, because the function that we want to approximate will
be the observed time derivative [20,60] of an input flow field v with
respect to the frame field f(x) (see Egs. 17 and 18), and to make our
notation match the intended semantics, we will now denote the input
function values that we want to approximate by %;, instead of by f; as
in Eq. 4, and the approximating function by 2(x), instead of by f(x).
For any given position x € U, which does not have to be a grid point,
we determine the corresponding unknown 6D parameter vector f(x) €
RS, such that the approximating function Z(x) determined by f(x)
minimizes a weighted squared approximation error. Using an MLS
formulation with a vector-valued function Z(x) [39], we can write

Fx) =argming Y (|2 (x) — 2|7 0(lx—xil])-
icl(x)

(14)

The vector-valued input function is only known by sample values %;
at discrete sample positions x;. The aim is to determine a smooth func-
tion Z(x) that approximates the function values Z;, with the squared
approximation error measured at the corresponding points x;. The
function Z(x) is determined by the parameters that are encoded in
the smooth parameter field f(x). We search for the unknown parame-
ters f, where for every point x the corresponding parameters f(x) are
determined by solving a local weighted least squares approximation
problem. Solving this problem for all points x € U gives the smooth
parameter field f(x) and the corresponding smooth function Z(x).

The function Z(x) and the discrete function values Z; at positions x;
will be defined below such that the least squares approximation problem
of Eq. 14 will determine an optimal reference frame field of parame-
ters f(x) that is locally adapted to features of the input flow field v.

The weights in Eq. 14 are given by the distance-dependent weighting
function 6(d), where d = ||x — x;|| is the distance between the points x
and x;. Typical weighting functions in moving least squares approxima-
tion, which we also use in this work, are the Gaussian

0(d) = e, (15)

and the exponential

0(d) =e . (16)
In these weighting functions, A € R is a user-defined scaling parameter.
In the supplemental material, we also evaluate Wendland’s compactly
supported functions ¢3 o, ¢3 1, and ¢3 2 [56], which yield results similar
to those of the Gaussian function.

To locally adapt the reference frame field to features of the flow
field v, we modify the distance function between points x and x; ac-
cording to a scalar guidance field, as described below, yielding our final
moving least squares approximation in Eq. 22.

3.2.1 Fitting reference frame fields

In order to compute a moving least squares approximation using the for-
mulation of Eq. 14, we have to define the input function values Z; given
at discrete sample positions x;, and how the corresponding approxi-
mating smooth function Z(x) is determined by the parameters f € R®.
To determine a field of unknown reference frame parameters f(x), we
compute the minimizer in Eq. 14 with the definitions

0 ow
D5() = 5 = =5l Velws) ~Vws(). (7
7= (0.0)"" (15

On the right-hand side of Eq. 17, the dependence of all terms on the
point x; is implicit for brevity. Likewise, all terms involving w are
determined by the parameter vector f, as given by Eqgs. 7 and 8.

The term Vv (w) is the directional derivative of v in direction w,
i.e., Vo(w) = V. In fluid mechanics, this is sometimes also written
as directional derivative operator (w - V)wv. Likewise, Vw(v) = V,w
is the directional derivative of w in direction v, or (v - V) w.

Eq. 17 specifies the vector corresponding to the observed time deriva-
tive defined in prior work, e.g., [20, 21, 60], using the specific Lie
derivative (/91 + %) (v — w), evaluated at the point x;. The ob-
served time derivative is a vector field that gives the instantaneous rate
of change of the velocity field v relative to the reference frame motion
given by the velocity field w, which in our context is determined by
the parameter vector f. The goal of minimizing this expression is to
determine a reference frame w that perceives an unsteady input flow
field v as steady as possible. We also note that this expression is objec-
tive [20]. Correspondingly, all function values %; in Eq. 18 are simply
defined to be the zero vector at all x;, because we target a vanishing
time derivative, i.e., a steady observed velocity field, everywhere.

This leads to a somewhat “non-standard” moving least squares
approximation problem, because we are in fact approximating an
everywhere-vanishing function. However, this enables us to use the
standard moving least squares machinery in our context, and it gives us
the desired smooth reference frame field f (x) over the whole domain U.
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3.2.2 Using guidance fields

We conceptually embed the regular grid of the input vector field v, with
grid points x;, in a manifold on which the regularly spaced grid points
become irregularly spaced points ;. To determine the irregular spacing
of points, we use a scalar field, such as FTLE, as a guidance field

g:U—R. (19)

We use the field g to conceptually define a height field, as a two-
dimensional manifold (i.e., a surface) embedded in R>. We define this
manifold as the graph of the function g(x), which is given by the set

G={(xgkx)xeU} CR>xR. (20)
Over the 2-manifold G, with points £ € R? x R on G denoted by £ :=
(x,g(x)), we will compute distances

dg(x,x;) := distance(%, %;). 21

That is, the distance function dg depends on the guidance field g and
the corresponding manifold G. The distance function on the right-hand
side above is discussed in Sec. 3.2.4. Using the distances d, determined
by the guidance field g, and inserting ; = 0 (Eq. 18), we finally obtain
the complete moving least squares approximation that we use as

flx)= argmin g/ Z(: H@f/(xi)Hz 6 (dg(x,xi)) .
i€l(x)

(22)

The index set I(x) can be chosen such that, for all i € I(x), either
dg(x,x;) < r, with some distance threshold r € R, or alternatively such
that 0 (dg(x,x;)) > €, for some small weight threshold € € R below
which the influence of a point is considered to be negligible. In our
implementation, we use the latter approach, i.e., we look at weight val-
ues 6 (dg (x,x,-)) and set a small threshold €. We choose this approach
for convenience, and note that alternatively specifying a distance thresh-
old r is completely equivalent, since all our weighting functions 0 are
invertible. Thus, for any given weight threshold €, the corresponding
unique distance r = 6! (€) can be determined directly, and vice versa.

To facilitate efficient GPU implementation, we use a conservative
approach to choose (x) to correspond to a square region of grid points
of the input grid around the point x. Conservative here means that
the region should not be too small (i.e., it should not miss x; with
6 (dg(x,x;)) > €), but it can be slightly too large such that it might

contain some x; with 6 (d, (x,x;)) < €. For a given data set, we choose
the same constant region size for all points x € U, and verify in a
pre-process that no weight values greater than € are missed. See below.
3.2.3 Explicit local weighted least squares computation

For any given point y;, building on Eq. 11, and Egs. 12 and 13, we define
the following 2 x 6 matrix A, and 2 x 1 right-hand side b, respectively,

0)),

(23)

Ai) = <(0 | =W(i) )+ (Vo-W(y) [0) - (8 8 :?

Jdv

b(y;) = TR

The dependence of v on the point y;, as for W, is implicit for brevity,
and the vector v = (vy, Vz)T. The matrix A results from Eqs. 12 and 13,
and using Eq. 10 for the term Vaw ¢ (v). We can now compute Eq. 17 as

Dy (vi) = AQyi) F —b(yi)-

We now define (but never explicitly construct) a 2N x 6 matrix A
vertically concatenating all 2 x 6 matrices A(y;) for N points y;, with
N = |I(x)| the cardinality of the index set I(x), and similarly a 2N x 1

vector b. The normal equations of the corresponding weighted least
squares problem determining the minimizer f = f(x), x fixed, are then

ATOAf=ATOb,

(24)

f= (AT@A)AAT@B. @

The (not explicitly constructed) 2N x 2N weight matrix ® is
© = diag (6(dg(x,x1)),...,0(dg(x,xn))).

We directly compute the 6 x 6 matrix AT ©A, at any point x, as (x; = y;)

(A708) (1= F o(dste) AT0n) A
iel(x

(26)

27

Similarly, we get the 6 x 1 right-hand side AT © b, at the point x, as

<AT®B) @)=Y 0(dg(x,x)) AT(3) b(y)).
i€l(x)

(28)

The solution for the minimizer f(x) at any desired point x € U is thus
computed by solving the 6 x 6 square linear system given by Eq. 25
for the point x, with the 6 x 6 system matrix (A7 ®@A)(x) computed via
Eq. 27, and the 6 x 1 right-hand side (AT © b)(x) computed via Eq. 28.
The 6 x 6 system matrix AT @A is always guaranteed to be positive
semi-definite, and if it is non-singular, it is positive definite. To en-
sure non-singularity and numerical stability, we solve our system with
Tikhonov regularization [52]. In our implementation, we solve the regu-
larized linear system via the standard QR factorization of AT @A + A71,
where A7 is a regularization weight and I is the identity matrix.
Computing the minimizer f(x) for all x € U gives the smooth ref-
erence frame field x — f(x). In our implementation, we compute the
minimizer at the spatial locations x; of the grid points of the regular
grid on which the input vector field v was sampled, and store the
corresponding 6D parameter vector f(x;) (Eq. 6) per grid point x;.

3.2.4 Distance function
In order to define the distance function in Eq. 21, we will use curves
s +— ¥(s) on the height field manifold G, i.e., we define curves
¥:1— G,
5= F(s).
The interval [ is a parameter interval / C R, such as [ = [0,1]. We
define the curves ¥ on G by “lifting” curves s — ¥(s) in the domain U

(i.e., any yis a curve in flat R?) to the (curved) height field manifold G,
according to the guidance field g. That is, we define the curves

(29)

7(s) := (1(5).8(r(5))) € GCR* xR (30)
The corresponding curve in U C R? is given by
I—=U
Y ) 31)
5= Y(s).

One option to define distances on the height field manifold G would be
to use geodesic distances on the manifold G. However, for simplicity,
we define the curves ¥ as straight lines in U C R2, connecting the
points x and x;. We define the curve (straight line)

s—Sg

y(s) :==x+ “(xi—x), with sel, (32)
Sp—Sa
with the interval I = [s4, ], for y: I — U, given by
sq:=0,
‘ (33)
sp = |l — x|

That is, the parameterization of ¥ uses the Euclidean distance in R2,
trivially giving an arc length parameterization of the straight line .

From this basic setup, we can now define a distance measure based
on the arc length of the curve ¥ on the height field manifold G. That is,
we define the distance d, (x,x;) to be the arc length of the curve s — (s)
on G, from the point ¥ = (x,g(x)) to the point &; = (x;,g(x;)), i.e.,

dg(x,x;) = / d¥s)

Sa ds

"Sh

’ ds. (34)
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Fig. 4: Karman vortex street. (Top) FTLE field at time r = 10.8. (Bottom) Inset images, presented in pairs of exponential (Eq. 16) and Gaussian
(Eq. 15) weighting functions, color-code the weights 6(d) of the spatial neighborhood surrounding the red points. Gaussian weighting produces
localized weights, while exponential weighting produces large regions of nonzero weights. From left to right, the first pair of insets corresponds to the
top-left point, the second corresponds to the bottom-left point, and the remaining correspond to points moving towards the right. As vortices move
away from the obstacle and fade, their separatrices also fade, and the region they enclose expands. The neighborhood weighting adapts accordingly.

This is illustrated with the red line and arc in Fig. 3. A simple way
to compute the arc length in this setting is to use Cartesian coordi-
nates (%,9,2), where X(y(s)) and §(y(s)) are the coordinates of the
point y(s) in the domain U C R?, and the coordinate 7 is defined by

2(v(s)) == g(¥(s))- (35)
In order to compute Eq. 34, we therefore need to compute
ay(s) || [(dr\? | (dg\? | [d2\?
H ds || o) T\as) P& ) (36)

We sample the curve from & to &; with short straight line segments with
parameter length As, integrating Eq. 34 numerically. If the segments
are small enough, at any point with parameter s we can approximate

g(r(s+49) — (1))

dz N
ds - As
N

Moreover, the curve parameterization of Eq. 33 means that (d&/ds)? +
(dy/ds)? = 1, and we can approximate the integrand in Eq. 34 by

’ on \/1+ (stro+) g(y(s)))z .

(37

ds

2
As

3.2.5 FTLE as guidance field

To constrain the neighborhood of the reference frame optimization to
regions with coherent fluid motion, we use the maximum of the forward
and backward finite-time Lyapunov exponent as guidance field g(x) in
the distance computation, cf. Eq. 1;
_ T -T

g(x) = max (0, 67 (), 0,7 (x)).. (39)
To resolve small-scale structures, we calculate FTLE fields with three
times the resolution of the input vector field. The size dimprpg of each
dimension is computed as 3 - dim;yp, — 2. The necessary flow map
gradient F is computed numerically by finite differences [22] from
flow maps released at the higher resolution grid. For each sample
in the FTLE field, we release four tracer particles around the sample
(up, down, left, right), at distances (domain size)/(dimpr g — 1), di-
mensions and spacings are independent for each dimension. For the
pathlines, the integration is computed using Atpy g = At /4, where At
is the input field temporal sampling rate. FTLE is dependent on the
integration duration 7. The effect of this parameter on the result is
studied below. For a given time and position, the weight or contribution
of each neighboring sample to the local frame optimization is computed
based on the induced distance, which can be large for spatially close

points in the input domain, if they are positioned on opposite sides of an
FTLE ridge. In this way, the reference frame optimization will locally
adjust to the regions defined by the Lagrangian coherent structures
present in the FTLE field, as illustrated in Fig. 4 for the Kdrmdn vortex
street.

4 RESULTS

After introducing the data sets, we first formally define our quantitative
quality metrics. Next, we perform a parameter study of the FTLE
integration time and provide details on the calculation of the FTLE
fields. Then, we discuss the selection of the parameter A for each
dataset. Afterwards, we discuss the decreased observed time derivative
and small-scale vortices detected using our pipeline. Finally, we show
a runtime comparison between our method and the baseline.

Data sets. We evaluate our method on five numerically simulated
turbulent vector fields computed using a stream function vorticity solver
in the open-source framework Basilisk [41]. In the following, we refer
to these flows as TURBULENCE] (least turbulent) to TURBULENCES
(most turbulent). The first four flows have dimensions 256 x 256 x 400
and are defined in the space-time domain [0, 1]% x [0,0.2]. The last flow
has size 256 x 256 x 321, and is defined in [0, 1]* x [0,0.1605]. For
reference, we then also apply the approach to a well-known CYLINDER
flow [13], containing a von Karmén vortex street at Reynolds number
160. The flow was simulated with Gerris [42], has a resolution of
640 x 80 x 1501, and is defined in the space-time domain [—0.5,7.5] X
[—0.5,0.5] x [0,15]. For validation, we process all datasets with the
local frame optimization method by Giinther et al. [13], which we
denote ‘Baseline’. We extract vortex corelines in the optimal frame by
tracking the corresponding critical points moving over time, requiring
complex eigenvalues in the Jacobian at the critical point to exhibit
rotational behavior [16]. For all results, we use the Gaussian weighting
function (Eq. 15). It is smooth at d = 0 and its faster decay after d > 1
provides better locality than the exponential function, as illustrated in
Fig. 4. For all experiments, we use Ay = 10 for Tikhonov regularization
when solving the linear system of Eq. 25.

Quality criteria. For quantitative comparisons of the extracted
vortex corelines, we compute a number of quality criteria. Let C be the
set of all vortex corelines. Each coreline is denoted by ¢ € C, and is
represented by samples at discrete positions ¢; € R? along the coreline,
where ¢; denotes the coreline position at time ¢#;. First, we calculate
the duration of all discrete vortex corelines ¢ € C, as the number of
timesteps they span, which is later referred to as mac.

The alignment of vortex corelines and pathlines is assessed per seg-
ment by releasing a pathline at the start of the segment and measuring
the distance to the end of the segment after advection, giving a mean
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A =0.0125

A= (baseline) A= l

Fig. 5: LIC in the optimal frame with color-coded vorticity, TURBULENCE1
dataset. Small-scale vortices outside the current turbulence spectrum
are observed alongside artifacts in the color-coded vorticity for A = 1.
For A = 0.0125, the results are consistent with the baseline.

segment error when averaged over all segments:

Mmge = ‘C| Z Z H¢t'+1 ll(ci)_ci+1”~

ceC| | (ciscivr)€C

(40)

Here, as in all our FTLE computations, ¢ denotes the flow map. The
per-segment error is later color-coded on the visualized vortex corelines.
The drift of corelines from pathlines is determined by an endpoint error,
as the difference between the endpoint of the coreline and the final
position (endpoint) of the pathline released at the initial position of the
coreline:

Mepe = |C‘ Z H t,,—to (co) —cnl|- 1)

We also include the total number of detected corelines. For non-
turbulent flows, this metric should be similar between the baseline
and our method. However, for turbulent flows, our method should
detect a larger number of corelines corresponding to the previously
undetected vortices at smaller scales, while maintaining low average
error across the corelines.

Finally, we include the integral over the whole domain of the mag-
nitude of the observed time derivative, given by the right-hand side of
Eq. 17. In this section, we will denote the observed time derivative
by v/, and the magnitude of the observed time derivative integrated
over the whole domain by ||v;/ ||,,,,;- This is an important quantity to
evaluate, since the frame optimization aims to observe flow fields as
steady as possible, i.e., to minimize ||v;[|,,;,;-

4.1 FTLE Guidance Field Computation

For each timestep, we compute a 2D FTLE field, yielding a time-
dependent 2D scalar field. We define the integration time as T g =
k- Atprr e, where k is a given number of discrete timesteps. The
initial time #y is set to #, the time of the current timestep. Re-
pelling FTLEs are computed with T = Tprp g, and attracting FTLEs
with T = —Tprrg. To understand the effect of k in the guidance
fields, we computed a series of FTLE fields for TURBULENCE1 with
k=1,5,10,20,50,80,100,200. FTLE images for multiple values of
k are included in the supplementary material. Noticeable differences
were found between k = 10,50, 100,200. For lower values of &, the sep-
aratrices are blurred, and they become sharper as k increases. Further-
more, for fixed k = 80, we computed FTLE fields across the turbulence
datasets. As turbulence increases, we get sharper FTLE features.

We use k = 80 for all datasets. Larger values will improve the quality
of the guidance fields at lower levels of turbulence. However, the
baseline method performs well in this scale, and the runtime increases
with k. Hence, we decided to use k = 80 for all our experiments,
which provided moderate coreline improvements for laminar flows,
and significant improvements for turbulent flows. For all datasets,
we compute and store G,g (x) and Gth(x) before optimization for all
available timesteps. For the first k timesteps, it is not possible to
compute the required attracting field, and similarly for the repelling
field in the final k timesteps.

4.2 Parameter Study

The weighting functions in the moving least squares approximation
in Egs. 15, 16 contain a user-specified parameter A. In Table 1, we
varied A for the TURBULENCEI dataset, observing its impact on the
quantitative metrics for our approach, compared with the baseline. As
A increases, the number of corelines increases and the average length
decreases significantly. The average mepe (Eq. 41) decreases, while the
average mmge (Eq. 40) increases. Hence, higher values of A produce
multiple short, high error corelines. This is illustrated in Fig. 5, where
false positives are introduced for A = 1. Regarding the drop in average
Mepe, it is likely due to the additional shorter corelines. As A decreases,
the overall metrics improve until A = 0.0125, which is the value that
we used for the TURBULENCE] dataset, as it resulted in smaller errors
and the longest vortex corelines. In Fig. 5, we also emphasize that
A =0.0125 is consistent with the baseline, which is equivalent to A =0
since we get 0(d) = 1 independently of d. The results are virtually
identical for large-scale features, with minor differences at the smallest
scales. Additional comparison images for large coherent regions are
presented in the supplementary material.

We performed similar experiments for the other datasets and found
similar behavior while varying A. We selected A = 0.0125 for TUR-
BULENCE?2, and A = 0.00625 for datasets TURBULENCE3 to TURBU-
LENCES. For the CYLINDER dataset, we chose A = 0.02. Tables with
metric comparisons are found in the supplementary material for the
other datasets.

4.3 Karman Vortex Street

We optimize this well-known vector field with our method and the
baseline method as validation. With A = 0.02, we obtain almost iden-
tical results to the baseline. The coreline metrics are included in the
supplementary material.

Away from the obstacle, the corelines and LIC images are identical.
Only the corelines directly on the right of the obstacle are slightly
different, which is expected since this is the only region with relatively
small-scale features corresponding to newly born vortices. In the rest
of the domain, features are relatively large-scale and move coherently
in a straight path towards the right. Near the obstacle, our corelines
are longer by one segment and have marginally higher error, as seen
in Fig. 6. The leftmost long coreline in ours is slightly longer towards
earlier timesteps. For the shorter coreline at the top left, ours is slightly
longer towards —¢, and the color-coded segment error reveals a (numer-
ically marginal) higher error. LIC and ||v;|| for the leftmost part of the
domain are shown in the supplementary material.

4.4 Decreasing Observed Time Derivative

Frame optimization seeks to observe vector fields in an as-steady-
as-possible form, which relates to minimizing the magnitude of the
observed time derivative, given by the right-hand side of Eq. 17. In

baseline (uniform) [13] ours (adaptive)

Fig. 6: 2D space-time view of different corelines. Time is depicted along
the vertical axis. Our results are consistent with the baseline, with some
slightly longer corelines.


https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

Table 1: Parameter study for the TURBULENCE1 dataset to determine a suitable choice for A in Eq. 15. The reported values are averages over all
corelines for each setting. my, is the duration of corelines in timesteps, nn. is EQ. 40, mep. is Eq. 41, |C| is the number of corelines, and ||v/||,,,,; is
the magnitude of the observed time derivative integrated over the whole domain.

Quality Criteria | A =1 | A=05 | A=025 | A=0.025 | A=0.0125 | A =0.00625 | Baseline
Mtac 58.72 60.97 70.96 89.69 93.85 88.67 90.18
Mmse 239%x107% | 231x107% | 2.03x107% | 1.74x107* | 1.73x107% | 1.98x107* | 1.83x 1074
Mepe 291x1073 | 277x1073 | 3.14x 1073 | 419%x 1073 | 4.61x 1073 | 4.45%x 1073 | 4378 x 1073

IC| 342 345 304 212 200 209 204
107 | orar 233x107 | 253x107 | 281x107 | 3.76x107 | 3.93x107 | 4.04x 10’ 4.18 x 107

Fig. 7, we present crops of the FTLE and the magnitude of the observed
time derivative ||v;|| of the objective fields obtained with the baseline
and our method, for timestep 80 of the TURBULENCES dataset. Our
method produces a smaller ||v/|| in the entire domain. Moreover,
significant differences are found in multiple regions corresponding to
FTLE valleys surrounded by ridges. As marked by the circles, the
magnitude of the observed time derivative obtained with the baseline
presents strong spikes, which are not present in our results.

For this highly turbulent dataset, there is a significant difference in
the number of detected corelines |C| among the considered methods:
1886 for the baseline, and 2389 for our method. All the remaining
metrics are also improved with our technique. Regarding the impact of
our method on the minimization of the magnitude of the observed time
derivative, its integral over the whole (space-time) domain is 2.11 x 108
with the baseline, and it is 1.48 x 10% with our method, roughly 30%
less. In contrast, for non-turbulent flows, there are large valleys in the
FTLE field where the optimization results obtained with the baseline
and our technique are similar, as seen in Fig. 5. Please refer to the
supplementary material for images including FTLE, LIC, and ||v; || for
TURBULENCEI.

o7 ours

FTLE ||vf|| baseline

@O

Fig. 7: Comparison of the magnitude of the observed time derivative,
|lvf|, of the baseline (center) and our method (right) for the TURBU-
LENCEDS dataset. Overall, the ||v; || obtained with our method is smaller.
Moreover, significant differences are found in several regions correspond-
ing to FTLE (left) valleys, where the baseline presents spikes in ||v;/||.

4.5 Detection of Small-Scale Vortices

Our method can detect small-scale vortices since we weight the samples
in the neighborhood adaptively based on the FTLE field. Fig. 1 shows
the FTLE field and the result of the reference frame optimizations
of prior work [13] and our adaptive method for our most turbulent
flow, TURBULENCES. It is evident that the FTLE field, comprising
both forward and backward FTLE, segments the flow into a very high
number of regions, some of which enclose small-scale vortices. The
close-ups below the LIC images show several smaller vortices that
have been successfully detected by our method, but not by prior work.

The color-coding of vorticity reveals where vortices are expected to
appear. In prior work, regions of vorticity extrema were observed in
LIC images; however, LIC does not explicitly depict vortical motion.
In contrast, our adaptive method generated LIC images with circling
streamlines in regions with vorticity extrema and bounded by FTLE
ridges.

4.6 Corelines in the Turbulence Datasets

‘We showed in previous sections that the observed time derivative, which
is the quantity minimized by the optimization, decreases when using our
adaptive neighborhoods. To evaluate the effect of our method on core-
line extraction, we compare corelines extracted using prior work [13]
and our adaptive method for datasets TURBULENCE1, TURBULENCE3,
and TURBULENCES in Fig. 8. Similar comparisons are included for
datasets TURBULENCE2 and TURBULENCE4 in the supplementary
document. Moreover, these comparisons are further illustrated in the
supplementary video. For both methods, a neighborhood of 31 x 31
grid points was used. The corelines have been extracted by a root-
finding solver per time slice [16] and connected over time to form
connected curves. To depict coreline quality, the mean segment error
Mmse 18 color-coded on the lines. We can observe that the differences
in the corelines increase as the flow turbulence increases. This is not
surprising, since the uniformly-weighted reference frame optimiza-
tion [13] places the neighborhood window over multiple vortices. If
those smaller vortices travel in different directions, then it is not possi-
ble to find a single observer following all vortices in the neighborhood.
Instead, a compromise is found that cannot make the flow steady for ei-
ther of the smaller vortices. Consequently, prior methods fail to capture
small-scale structures. In addition to detecting additional vortices, we
observed that our method allows the extraction of longer and smoother
vortex corelines.

4.7 Runtime Comparison

Adjusting the neighborhood in the reference frame optimization accord-
ing to the transport barriers comes at a performance cost, due to the
computation of the FTLE and guidance field. Table 2 compares the
runtime between the baseline [13] and our method. All measurements
were taken on a workstation with an Intel Xeon CPU E5-2687W (3
GHz) and an Nvidia GeForce RTX3090. We implemented the refer-
ence frame optimization for both our method and the baseline [13]
on the CPU with parallelization. The baseline method optionally uses
summed-area tables (SAT) for the sum of the local linear systems. This

Table 2: Comparison of the computation times between the base-
line [13] and our method. For the baseline, we show the performance
with and without the use of summed area tables (SAT). For our method,
we list the runtime for computing FTLE, the distance measures, and the
final linear optimization. All measurements are in seconds.

Baseline [13] Our method
Dataset | SATon SAToff | FTLE distances optimize
TURB. 1 | 85.47 118.34 | 2402.77 1407.15 106.6
TURB. 2 | 77.95 108.63 | 2402.77  1820.09 116.29
TURB. 3 | 62.75 109.68 | 2402.77 172046  110.83
TURB. 4 | 65.52 104.54 | 2402.77 1723.24  108.01
TURB. 5 | 64.64 91.77 | 1928.22 1381.09 100.09
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(c) TURBULENCE 3
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Fig. 8: Coreline comparisons for increasingly turbulent flow fields. (a) corelines (ours) from TURBULENCET1 (left), TURBULENCE3 (middle), and
TURBULENCES (right), where the coreline color encodes the mean segment error per coreline. (b) TURBULENCE1 corelines zoom in, where the
baseline [13] results are on the left and our results are on the right for each pair of insets. (c) TURBULENCE3 zoom ins. (d) TURBULENCE5 zoom ins.

is only possible with uniform weights, and cannot be applied in our
method. We implemented the extraction of FTLE and the guided dis-
tances on the GPU using CUDA. The FTLE field is extracted at three
times the spatial resolution of the underlying vector field, which takes
about 6 seconds per time slice (forward and backward).

5 CONCLUSIONS

Reference frame optimization methods are a promising approach to
vortex coreline extraction in time-dependent flow, as they enable
the application of techniques originally developed for steady vector
fields [13]. However, all existing local reference frame optimization
approaches [2, 13,18, 19,44] find the optimal reference frame for a
spatial neighborhood in which the flow is assumed to move coherently.
In turbulent flow, however, this assumption does not hold, since mul-
tiple vortices can exist in close proximity. Nevertheless, the vortices

are separated by transport barriers that can be approximated as ridges
in the finite-time Lyapunov exponent (FTLE) field. Using the FTLE
field, we locally adjust the neighborhood in which the reference frame
is optimized by adapting the corresponding weighting, which enables
the extraction of nearby vortices.

Currently, our approach is targeted to 2D flows. Extending the use
of guidance fields to constrain 3D local reference frame optimization
to coherent flow regions is a promising research direction. Besides,
previous reference frame optimizations have been temporally local, i.e.,
they only needed the velocity field and its time derivative in a single
timestep. In our approach, however, since we use the FTLE field to
guide the adaptive neighborhood weighting, we now require larger time
windows. Furthermore, the FTLE computation increases the overall
runtime of the algorithm. In the future, it will be interesting to explore
temporally local alternatives for the determination of transport barriers.
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