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Unified Smooth Vector Graphics: Modeling Gradient
Meshes and Curve-based Approaches Jointly as

Poisson Problem
Xingze Tian and Tobias Günther

Abstract—Research on smooth vector graphics is separated
into two independent research threads: one on interpolation-
based gradient meshes and the other on diffusion-based curve
formulations. With this paper, we propose a mathematical formu-
lation that unifies gradient meshes and curve-based approaches
as solution to a Poisson problem. To combine these two well-
known representations, we first generate a non-overlapping
intermediate patch representation that specifies for each patch a
target Laplacian and boundary conditions. Unifying the treatment
of boundary conditions adds further artistic degrees of freedoms to
the existing formulations, such as Neumann conditions on diffusion
curves. To synthesize a raster image for a given output resolution,
we then rasterize boundary conditions and Laplacians for the
respective patches and compute the final image as solution to a
Poisson problem. We evaluate the method on various test scenes
containing gradient meshes and curve-based primitives. Since
our mathematical formulation works with established smooth
vector graphics primitives on the front-end, it is compatible with
existing content creation pipelines and with established editing
tools. Rather than continuing two separate research paths, we
hope that a unification of the formulations will lead to new
rasterization and vectorization tools in the future that utilize the
strengths of both approaches.

Index Terms—vector graphics, diffusion curve, gradient mesh

I. INTRODUCTION

The field of smooth vector graphics describes image content
based on geometric primitives, such as curves or meshes. This
is in contrast to raster graphics, which store the color of
each pixel explicitly. Smooth vector graphics are a popular
tool for the modeling of scale-independent content, such
as icons, schematic illustrations, or web content [20], since
images can be synthesized on any output resolution. Basic
vector graphics primitives are standardized in the SVG format,
which includes the most basic shapes and color gradients. In
research, two conceptually different approaches have been
developed to extend the artistic control in smoothly-shaded
regions. On the one hand, there are gradient meshes [27],
[50], which interpolate colors from tensor product surfaces
efficiently. And on the other hand, there are curve-based
approaches such as diffusion curves [24], [38] and Poisson
curves [19] that model the final image as solution to a diffusion
problem from user-defined boundary conditions, e.g., curve
colors. Both approaches remained incompatible, and research
on editing, rasterization, and vectorization, has continued
separately on the two research threads [55]. With this paper,
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we propose a mathematical formulation that allows combining
gradient meshes and curve-based approaches consistently for
the first time. Fig. 1 gives an example, where gradient meshes
are combined with diffusion curves and Poisson curves. To
maximize the compatibility with existing methods we take a
set of gradient meshes, diffusion curves, and Poisson curves as
input, which are well-known primitives that the user interacts
with on the front-end. To unify the modeling, we convert those
representations first into an intermediate patch representation
that specifies for each patch a target Laplacian function and
boundary conditions. This intermediate representation is not
visible on the user interface and is only used internally to
assemble the Poisson problems. We propose to model the
pixel color within gradient meshes as solution to a partial
differential equation (PDE) in order to match their mathematical
treatment with that of curve-based methods. In the conversion
process to our patch representation, geometric intersections
of gradient meshes and curves get resolved automatically to
yield a non-overlapping domain decomposition. In our new
formulation, additional types of boundary conditions are added
to the existing primitives, which extends the artistic freedom.
For example, Neumann conditions can be specified on diffusion
curves, as in Bang et al. [2]. To synthesize a raster image for
a given output resolution, we rasterize boundary conditions
and Laplacians for the respective patches and compute the
final image as solution to a Poisson problem. We evaluate the
method on various test scenes containing gradient meshes and
curve-based primitives. In summary, our contributions are:

• We propose a unified mathematical formulation of gradient
meshes and curve-based methods as a Poisson problem.

• We unify the treatment of boundary conditions, which
adds (optional) degrees of freedom for artistic control.

• We introduce an automatic conversion algorithm that
divides the input primitives into non-overlapping patches.

• We describe a rasterization algorithm for the novel patch
formulation that synthesizes images for a given resolution.

• We provide an open source implementation that reads the
scenes, constructs the patches, and renders them.

• We compare the unified scenes with vectorizations using
gradient meshes only, and using diffusion curves only.

For the first time, our approach enables the unified mathematical
treatment of gradient meshes and curve-based methods, which
have been developed independently for over a decade. Since
we take existing gradient mesh and curve formulations as
input, our approach achieves high compatibility with existing
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(a) input meshes (b) input curves (c) undirected edge graph (d) unified patch representation (e) final synthesized image

Fig. 1. In this paper, we present an algorithm that unifies the image synthesis of smooth vector graphics containing, gradient meshes, diffusion curves, and
Poisson curves in the same scene. Given a set of gradient meshes (a) and diffusion and Poisson curves (b), we first resolve the geometric intersections by
forming an undirected edge graph (c), from which a unified patch representation is constructed that divides the domain into separate regions with well-defined
Dirichlet and/or Neumann boundary conditions (d). Lastly, the image can be computed with an off-the-shelf Poisson solver (e).

(a) Input primitives (b) Mesh-based only (c) Curve-based only (4) Patches (ours)

Fig. 2. This figure shows the benefits of combining gradient meshes with
diffusion curves. Gradient meshes are useful for controlling large multi-hue
color gradients (the sky), while curve-based methods can add details (the Sun).
From left to right, we show the input primitives (gradient meshes and diffusion
curves) (a), the result of only rasterizing the gradient meshes (b), the result of
only diffusing diffusion curves (c), and lastly our combined representation that
contains both (d). Note that the sun diffuses into the sky, mimicking scattering.

content creation pipelines. Further, the final algorithm leads
to a standard Poisson problem, for which highly optimized
numerical solvers readily exist. The benefits of combining
gradient meshes and curve-based formulations in the same
scene are shown in Fig. 2. While curve-based approaches are
useful to create intricate details, it is easier to create larger color
gradients with mesh-based approaches [55]. By combining both
methods, we are able to generate expressive results that are
difficult to obtain with either representation on its own.

In the following section, we first introduce into the necessary
background on curve modeling before covering related work
on gradient meshes and curve-based formulations. Afterwards,
we introduce our unified mathematical description, which is
followed by our introduction of the automatic conversion
algorithm from standard primitives into our patch formulation.
Then, we describe the image synthesis process, user interactions,
and lastly we evaluate the approach on numerous scenes,
containing both gradient meshes and curve representations.

II. BACKGROUND

In this section, we formally introduce the notation used to
describe mesh-based and curve-based vector graphics primitives.
For a detailed coverage, we refer to a recent survey [55].

A. Bézier Curves
In this paper, we denote Bézier curves of degree n as

parametric curves γ(t) : [0, 1] → Rm in m-dimensional space:

γ(t) =

n∑
i=0

Bn
i (t) · bi with Bn

i (t) =

(
n

i

)
ti(1− t)n−i, (1)

where Bn
i (t) are the Bernstein basis functions, and bi ∈ Rm

are the Bézier control points. The curve tangent is denoted
by γ̇(t) = dγ(t)

dt . A cubic Bézier curve (n = 3) in a two-
dimensional plane (m = 2) has four control points b0, b1, b2,
and b3, and has by convention a right-oriented curve normal
γn(t) : [0, 1] → R2:

γn(t) =

(
0 1
−1 0

)
γ̇(t)

∥γ̇(t)∥
. (2)

Thus, given the control points b0, b1, b2, b3, the curve point
γ(t), tangent γ̇(t), and normal γn(t) can be evaluated for each
t. Multiple Bézier curves can be concatenated with suitable
continuity conditions to assemble a Bézier-spline curve [12].

B. Mesh-based Methods

Mesh-based vector graphics primitives specify color gradi-
ents inside connected regions by using interpolation. Depending
on the mesh topology, they are categorized into triangular,
rectangular, and irregular meshes. Our work focuses on
rectangular meshes.

a) Rectangular Mesh: By generalization of the Bézier
curves in Eq. (1), a Bézier tensor-product surface f(u, v) :
[0, 1]2 → Rm is

f(u, v) =

n1∑
i=0

n2∑
j=0

Bn1
i (u) ·Bn2

j (v) · fi,j . (3)

Later, we use the symbol ∂ufi,j := ∂f(u,v)
∂u |u=ui,v=vj

to
abbreviate the evaluation of a derivative at a discrete location.
Each tensor-product surface is bound by four Bézier curves
f(u, 0), f(u, 1), f(0, v) and f(1, v) with u, v ∈ [0, 1].

Price and Barret [41] used bi-cubic surfaces, which have a
degree of n1 = n2 = 3. The direct editing of its 16 control
points f0,0, . . . , f3,3 is cumbersome. Fortunately, a bi-cubic
tensor-product surface can be expressed as a Ferguson patch,
cf. Sun et al. [50]:

f(u, v) = t(u)T ·CT ·Q ·C · t(v) (4)

with the monomial basis t(t) = (1, t, t2, t3)T and the matrices:

C=


1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1

,Q=


f0,0 f0,3 ∂vf0,0 ∂vf0,3
f3,0 f3,3 ∂vf3,0 ∂vf3,3

∂uf0,0 ∂uf0,3 ∂u∂vf0,0 ∂u∂vf0,3
∂uf3,0 ∂uf3,3 ∂u∂vf3,0 ∂u∂vf3,3
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(a) Gradient Mesh (b) Diffusion Curve (c) Poisson Curve

Fig. 3. Overview of the three mesh and curve primitives that are used in our
framework. Gradient meshes (a) are assembled from Ferguson patches, which
contain smooth color gradients and are controlled by colors at the corners and
tangent handles. Diffusion curves (b) define a color on the left and right side,
typically by piecewise linear interpolation among color stops. Poisson curves
(c) allow for the modeling of cusps and highlights by locally adjusting the
Laplacian of the underlying color field.

To simplify the modeling, the mixed partial derivatives are
commonly set to zero, i.e., ∂u∂vfi,j = 0, and thus, a function
f(u, v) can be controlled by the user by specifying the values
fi,j and the tangent handles ∂ufi,j and ∂vfi,j at the four
corners i, j ∈ {0, 3}, see Fig. 3a. A gradient mesh consists
of multiple Ferguson patches that are stitched together with
suitable continuity condition. The functions f(u, v) that are
modeled by the gradient mesh are the position x(u, v) and the
color c(u, v). Thus, the degrees of freedom are xi,j , ci,j and
the tangent handles ∂uxi,j , ∂uci,j and ∂vxi,j , ∂vci,j at the four
corners (i, j) ∈ {(0, 0), (0, 3), (3, 0), (3, 3)}. To model holes in
surfaces, Lai et al. [27] proposed to split gradient meshes along
discontinuities. Barendrecht et al. [3] enabled local refinement
of cubic rectangular patches. Baksteen et al. [1] fitted mesh
colors [66] for colorization of gradient meshes. In line with
many other papers [56], [58], [61], [62], we likewise base our
description of gradient meshes on Sun et al. [50], see Eq. (4).

b) Triangular and Irregular Meshes: As an alternative
to rectangular meshes, triangle-based patches have been ex-
plored, where the patch boundaries are straight [28] or curved
edges [57], [59], [60]. Control over the continuity across
adjacent patches is desirable [31], [68]. To this end, quadratic
triangle configuration B-splines (TCBs) [7], [45] have been used
by Zhu et al. [69] to model color variations while staying C1

continuous. An example for irregular patches are the polygonal
patches of Swaminarayan and Prasad [53], who used constant
colors in the interior. With the introduction of Bézigons [63]
closed regions have been bounded by Bézier curves. For color
interpolation in the interior, several options are available [17],
[18], including cubic mean value coordinates [29]. Since
the methods above use differentiable interpolants, they are
compatible with our approach.

C. Curve-based Methods

With curve-based methods, color gradients are the result of a
diffusion process from colors given at the domain boundaries.

a) Diffusion Curves: Originally, diffusion curves [38] are
Bézier curves γ(t) with a piecewise linear color on the left and
right side, i.e., cl(t) and cr(t). The colors serve as Dirichlet
boundary conditions in a diffusion process that produces smooth
color gradients, see Fig. 3b. The reformulation of Jeschke et
al. [25] treats diffusion curves as domain boundaries ∂Ω of a

smoothly shaded region Ω. The color field of the shaded region
c(x) is as smooth as possible and meets the boundary color
g(x), as specified by the colors on the left and right hand side
of the diffusion curve.

c(x) =

{
∆c(x) = 0, x ∈ Ω\∂Ω
c(x) = g(x), x ∈ ∂Ω

(5)

Follow-up research on rendering [2], [39], [51], vectoriza-
tion [33], [67] and editing [26], [32] utilized this formulation.
To provide more control over the color gradients, Bezerra et
al. [4] controlled the strength and direction of the diffusion.
Alternatively, Sun et al. [52] introduced textures in diffusion
curves. Several renderers have been proposed by now that
are able to rasterize diffusion curves, including ray tracing
approaches [5], [40], Monte Carlo methods [9], [30], [34],
[36], [43], [44], [48], [49], and boundary element methods [2],
[8], [21]. Lately, Monte Carlo methods have been phrased in
a differentiable manner, which is useful for inverse problems
such as vectorizations [35], [64], [65].

b) Poisson Curves: By introducing Poisson vector graph-
ics, Hou et al. [19] edited the gradient in the domain by
introducing a desired (piecewise-constant) Laplacian f(x):

c(x) =

{
∆c(x) = f(x), x ∈ Ω\∂Ω
c(x) = g(x), x ∈ ∂Ω

(6)

Thus, rather than looking for the smoothest possible color gradi-
ent (via f(x) = 0), bumps and discontinuities can be introduced
in the color gradient, which are controlled locally by the user
by drawing curve and region primitives, see Fig. 3c. Non-
constant Laplacians in Poisson regions have been described
by raster images, and were utilized for color transfer between
images [14] and for image vectorization [15]. Alternatively,
Finch et al. [13] proposed to constrain high-order derivatives,
seeking solutions that are harmonic in their Laplacian domain,
i.e., ∆2c(x) = 0. With this formulation, extrapolation may
create new extrema at unconstrained positions [6], [13], which
requires manual adjustment of control points [13] or a non-
linear optimization [23]. Further, the diffused color range is tied
to the scene geometry, which may lead to oversaturation [24]
when scaling objects. In our work, we concentrate on the
Poisson formulation in Eq. (6), which includes the diffusion
curves in Eq. (5) as special case. Poisson vector graphics [19]
have led to a new line of work on the control over color
gradients within smooth vector graphics. In this paper, we seek
to utilize the well-established gradient meshes [50], which so
far have not been incorporated into this framework.

III. METHOD OVERVIEW

Our goal is to synthesize raster images for vector graphics
scenes that contain mesh-based and curve-based primitives at
the same time. Usually, mesh-based and curve-based methods
are rasterized in fundamentally different ways. While mesh-
based approaches use interpolation, curve-based methods solve
a Poisson problem. To model both approaches consistently, we
describe the mesh-based approaches as solution to a Poisson
problem that is identical to interpolation in the absence of
any curve-based primitives. A user of our system may decide
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(a) Input Primitives (b) Edge Graph (c) Unified Patches (d) Image Synthesis

Fig. 4. Schematic overview of our generalized smooth vector graphics pipeline. (a) Input to our method is a collection of (extended) gradient meshes,
(extended) diffusion curves, and Poisson curves. (b) The input primitives are converted and inserted into an edge graph that resolves the intersection of input
primitives. (c) From the edge graph a unified patch data structure is formed that defines patches as closed regions with boundary conditions according to the
underlying input primitives. (d) The unified patch data structure specifies the ingredients for a Poisson problem that is solved to synthesize the final image.

to draw curve-based primitives that intersect each other or
intersect with mesh-based primitives. To formulate the Poisson
problem, the scene is decomposed into non-overlapping regions
for which boundary conditions are defined and for which a
Laplacian is determined that controls the color gradient in
the interior. We formulate the rasterization of smooth vector
graphics as a pipeline consisting of multiple steps, see Fig. 4.

1) Input Primitives. Input to our method are standard smooth
vector graphics primitives, such as gradient meshes,
diffusion curves, and Poisson curves, which are created
and edited by the user. We extend gradient meshes and
diffusion curves by allowing the user to specify Dirichlet
conditions and homogeneous Neumann conditions on
either side.

2) Edge Graph. Both the extended gradient meshes and the
extended diffusion curves are inserted into an undirected
edge graph data structure [16], which records and resolves
all intersections of boundary curves.

3) Unified Patches. By traversing the edge graph, we
define closed, non-overlapping regions that have con-
sistent boundary conditions. The interior of each patch
is equipped with a Laplacian function that is either
homogeneous, or sampled from a gradient mesh and/or
multiple Poisson curves.

4) Image Synthesis. Given the patches with their boundary
conditions, we solve the Poisson problem for each patch
with an off-the-shelf Poisson solver.

A C++ reference implementation of our method can be found
at [54]. In the following, the four steps are explained in more
detail.

IV. INPUT PRIMITIVES

Input to our approach is a collection of extended gradient
meshes G, a collection of extended diffusion curves D and
a collection of Poisson curves P . Those three types of
input primitives are drawn by the user and can be edited
and controlled by manipulation of control points, tangent
handles, and color stops, identical to the editing processes
of conventional diffusion curves, gradient meshes, and Poisson
curves [55]. In the following, we explain how the primitives
are defined and how they are extended in our framework.

A. Definition
First, we introduce an input boundary curve, which is a

triplet (x(t),Bl,Br), as shown in Fig. 5. It consists of:

Fig. 5. Input boundary curves consist of a spatial curve x(t) and boundary
conditions on the left and right side, which may either be a Dirichlet boundary
condition BD (shown as colored line with control points) or a homogeneous
Neumann boundary condition BN (shown as a dashed line).

• the spatial curve x(t),
• a left boundary condition Bl,
• and a right boundary condition Br.

The spatial location of the input boundary curve is given by
a cubic Bézier spline x(t) : R → U , where U ⊂ R2 denotes
the image domain. The curve parameter range t ∈ [t0, t1]
defines the orientation of the curve. We require t0 < t1, where
the curve begins at t0 and ends at t1. This gives rise to the
notion of a left side and a right side of the curve. Each input
boundary curve will later define a boundary condition in the
field c(x) : U → C, where C ⊂ R3 is the color space. The
boundary condition is either a Dirichlet boundary condition
BD with color c(t) or a homogeneous Neumann boundary
condition BN with boundary normal xn(t), cf. Eq. (2):

BD =
{
c(x)|x=x(t) = c(t) Dirichlet with c(t) (7)

BN =
{

∂c(x)
∂x |x=x(t)

· xn(t) = 0 homogen. Neumann (8)

For notational convenience, we name the left boundary con-
dition Bl ∈ {BD,BN} and the right boundary condition
Br ∈ {BD,BN}. Adding inhomogeneous Neumann conditions
would be a straightforward extension that would, however, add
further complexity to the user interface.

a) Extended Gradient Mesh: A gradient mesh that con-
sists of a single Ferguson patch as in Eq. (4), with position
x(u, v) and color c(u, v), gives rise to four clock-wise oriented
boundary curves with positions x(t) ∈ {x(1, 1 − t),x(1 −
t, 0),x(0, t),x(t, 1)}. Using the clock-wise orientation of the
boundary curves, we set the right boundary conditions (i.e., the
inside of the gradient mesh) to a Dirichlet condition Br = BD

by using the corresponding colors c(t) ∈ {c(1, 1− t), c(1−
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input primitives w/ inner boundaries w/o inner boundaries

Fig. 6. When constructing input boundary curves, the inner edges of gradient
meshes are not added, since they would create diffusion barriers. The inner
edges are not needed, since the color gradients are fully determined by the
gradient mesh Laplacian, which is considered in the Poisson problem.

t, 0), c(0, t), c(t, 1)}. Our extension compared to a regular
gradient mesh is that we add the definition of a boundary
condition on the outside of the gradient mesh, as well. The left
boundary condition (i.e., the outside of the gradient mesh) is
by default set to a homogeneous Neumann condition Bl = BN .
The user may change this to a Dirichlet condition if desired. For
a gradient mesh that consists of multiple connected Ferguson
patches, input boundary curves are only generated for the
outermost Ferguson patch boundaries, which coincide with the
boundary of the gradient mesh. Adding the interior Ferguson
patch boundaries is neither necessary nor useful, since the
smooth color gradient in the interior of the gradient mesh will
be fully defined by the Laplacian of its Ferguson patches. Fig. 6
demonstrates this at the example of a closed diffusion curve
(circle), which intersects a gradient mesh (blue). If interior
patch boundaries were added, it would introduce unwanted
diffusion barriers that are counter-intuitive.

b) Extended Diffusion Curve: A diffusion curve γ(t) :
R → U with left color cl(t) : R → C and right color cr(t) :
R → C translates to an input boundary curve by setting x(t) =
γ(t) and by applying Dirichlet conditions on the left and right
with Bl = BD and Br = BD. Same as Bang et al. [2], we
extend diffusion curves by allowing to replace the Dirichlet
conditions with homogeneous Neumann conditions.

c) Poisson Curve: Analogous to diffusion curves, we
define a Poisson curve as a spatial curve p(t) : R → U with a
target Laplacian function on the left fl(t) : R → R3 and on the
right fr(t) : R → R3. Upon rasterization, the sides cover the
pixels Fl ⊆ U and Fr ⊆ U , respectively, with fl(x) : Fl → R3

and fr(x) : Fr → R3 being the target Laplacian at spatial
coordinates x ∈ D. To obtain shading consistency, Hou et
al. [19] required the functions fl(t) and fr(t) to sum to zero
along the curve, i.e., ∀x : fl(t) = −fr(t). For notational
convenience, we collectively refer to a sampling from the left
or right side of the target Laplacian as fp(t)(x) : D → R3:

fp(t)(x) =


fl(x) · γl(x) x ∈ Fl

fr(x) · γr(x) x ∈ Fr

0 else
(9)

where γl(x) is the number of adjacent pixels that belong to
Fr and γr(x) is the number of adjacent pixels in Fl, which
are used for normalization, cf. Hou et al. [19]. An overview
of the supported target Laplacians fl(t) is shown in Fig. 7.

fl = 0.2 fl = −0.2 linear piecewise rgb

Fig. 7. Overview of supported target Laplacians along Poisson curves,
including constant values, linear slopes, piecewise linear functions, as well as
the specification of a target Laplacian per color channel.

V. EDGE GRAPH

Diffusion curves and gradient meshes are placed and edited
by the user. In order to formulate the image synthesis as
a diffusion process with well-defined boundary conditions,
it is necessary to subdivide the image into closed, non-
overlapping regions. When one or multiple possibly-closed
or nested diffusion curves intersect with a gradient mesh, it is
necessary to consistently determine a Laplacian for the interior
of each separate region. In the following, we utilize a planar
map data structure [16] that we use to resolve intersections.
The subsequent section will use this data structure to define
connected regions and to determine a Laplacian for each region.

A. Definition

We introduce the undirected edge graph (V, E), which
consists of vertices v ∈ V and edges e ∈ E . The set of vertices
V contains all end points of the input boundary curves, as well
as their intersections. The set of edges E expresses how the
vertices are connected via the input boundary curves. Thereby,
each edge e ∈ E stores a reference to the underlying input
boundary curve that it was created for, such that it can access
the orientation of the input boundary curve and its boundary
conditions on the left side and right side.

B. Construction

An example of the edge graph construction is given in Fig. 8.
We begin with an empty graph, i.e., V = ∅, E = ∅. For each
input boundary curve (x(t),Bl,Br) ∈ G ∪D from all extended
gradient meshes G and extended diffusion curves D, we take
the following steps:

1) Allocate two vertices vi = x(t0), vj = x(t1) and
connect them by a curved edge eij using the curve,
i.e., eij = x(t).

2) If there is any other existing point vk ∈ V with ∥vi −
vk∥2 < τ or ∥vj −vk∥2 < τ , then merge nearby points.

3) If there is any other edge ekl ∈ E with eij ∩ ekl ̸= ∅,
then find the intersection and split the connected edges.

An inserted input boundary curve may have multiple intersec-
tions with other curves or with itself. The intersections are
resolved by inserting vertices until no further intersections can
be found. With this, the graph is brought back to a consistent
state and the next input boundary curve can be processed. The
parameter τ allows for closing gaps that would otherwise cause
unwanted color leaking. Fig. 9 illustrates the snapping of an
edge endpoint onto an existing curve. For this, the closest point
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Fig. 8. Given a graph with vertices V = {v1,v2,v3,v4} and edges E =
{e12, e23, e34, e41}. Inserting a new edge e56 with end points v5, v6 leads
to a new node v7 at the edge intersection and a splitting of edges.

input configuration find closest point snap v4 onto curve

Fig. 9. When the endpoint of the next edge (e34, green) is close to
an already existing edge (e12, black), then we snap the endpoint of
the new edge onto the existing edge.

τ = 0.0 τ = 0.1 τ = 0.2

Fig. 10. Here, the snapping threshold τ is varied. On the left, the
result without clean-up is shown. In the middle, the two endpoints at
the bottom merged. On the right, the gap at the top was closed. This
simple test scene is defined over the domain [−0.5, 2.5]2.

on the existing edge is determined, which is either one of the
end points or a point on the edge. In case of the latter, the
existing edge is subdivided, and the vertex of the new edge is
snapped onto the curve. Fig. 10 shows renderings for different
thresholds τ for a simple test scene.

C. Implementation Detail

During the graph construction process, input boundary curve
intersections need to be calculated. To accelerate the intersec-
tion tests, we internally discretize the input boundary curves
into piece-wise linear polylines in a top-down construction
that is based on the Ramer-Douglas-Peucker algorithm [11],
[42]. However, instead of starting from a polyline, we start
directly with the cubic Bézier curve. In Fig. 11(a), we define a
line that connects the first and last vertex of the curve. In (b),
we determine the curve point, which has the largest vertical
distance from the line. This is done recursively using Bézier
clipping [46]. In (c), we insert a new vertex at that point and
recursively proceed on the segments left and right. In (d),
we see the result after termination, which happens when the
distance of the farthest point falls below an error threshold ϵ.
In (e), we can see that it is not sufficient to only measure the
vertical distance to the line (blue). Instead, we also compute
the (signed) horizontal distance from the start and end point
(green). For subdivision, the maximum of the three distances

Fig. 11. Illustration of the curve discretization method. In (a)-(d), the recursive
subdivision is shown, while (e)-(f) illustrates at an example why measuring
vertical distances alone is not sufficient.

ϵ = 0.01 ϵ = 0.1 ϵ = 0.5

Fig. 12. Here, the results for different curve discretizations are shown, which
are obtained when choosing different error thresholds ϵ. This simple test scene
is defined over the domain [−0.5, 2.5]2.

is computed. In (g), the result is shown, which successfully
approximates the curve. Examples of different discretizations
are shown in Fig. 12 for a simple test scene. Finding curve
intersections then reduces to a line-line intersection test. When
a new curve is added by the user or when the control points
of an existing curve are moved, the curve is re-discretized.

VI. UNIFIED PATCHES

Using the edge graph, we subdivide the image domain into
non-overlapping patches with well-defined boundary conditions
and a Laplacian in the interior. The image synthesis can then
be performed for each patch independently. In the following,
we explain the patch generation process.

A. Definition
Formally, we denote the image domain as U ⊂ R2. Our goal

is to split the image domain into connected regions Ωi ∈ Ω :⋃
Ω∈Ω

Ω = U (10)

with the requirement that for every Ωi,Ωj ∈ Ω with Ωi ̸= Ωj ,
the intersection of the regions Ωi ∩ Ωj ⊂ E is either empty,
a 0-simplex (point), or a 1-simplex (line) in the set of graph
edges E . In other words, the boundaries of regions are sections
of the input boundary curves. For each region Ω, we denote the
desired color field as c(x) : Ω → C for x = (x, y) ∈ Ω, and its
boundary as ∂Ω ⊂ E , which might comprise just one closed
loop or multiple closed loops if there are holes inside a region.
We refer to the boundary curves of a patch as patch boundary
curves, which are clockwise-oriented curves with a boundary
condition B on only the right side. Further, each patch Ω is
equipped with a target Laplacian function f(x) : Ω → R3 that
controls the smooth color gradient inside the patch.

B. Construction
In the following, we elaborate on how patch boundary curves

and patches are created from the edge graph, and how the patch
Laplacian function f(x) is defined for each patch.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR 7

Fig. 13. Each edge is associated with an underlying input boundary curve,
which has an orientation (based on the parameter range [t0, t1]) and a left
and right boundary condition (Bl, Br). When traversing the edge during
construction of a patch (here green), the left or right boundary condition is
chosen based on the orientation of the underlying input boundary curve.

Fig. 14. Left: When traversing from edge e35 to vertex v5, there are three
directions, in which the traversal could continue (e15, e54, e52). Following
edges, we always turn right, i.e., we select the edge with smallest angle
(green). Right: When a loop is completely nested inside another loop, the
patch boundaries created from the inner loop are added to the patch.

a) Patch Boundary Curves: Each edge in the edge graph
corresponds to an input boundary curve. Further, every edge is
adjacent to two patches (except for image domain boundaries,
where one side would be outside of the image). Thus, when
constructing patches each edge will be visited up to two times
when constructing patch boundary curves (once for the left
side and once for the right side). The patch boundary condition
B of a patch boundary curve is chosen from the underlying
input boundary curve based on its orientation, as illustrated
in Fig. 13, i.e., we choose from the left and right boundary
conditions Bl, Br of the input boundary curve. Note that the
two adjacent patches can be the same patch, for example, when
a diffusion curve is nested inside a patch and when it is not
intersecting with the outer patch boundary.

b) Patches: The valence |vi| of vertex vi ∈ V in the
graph, i.e., the number of edges connected to it, tells how
often the vertex can be visited when traversing the graph in the
search for closed patches, namely 2 · |vi| (with the exception
of image boundary vertices for which it is 2 · |vi|−2). Starting
from the first vertex and its first edge in the graph, we traverse
the edges from vertex to vertex tracing out a sequence of
patch boundary curves that encloses a patch. A closed patch is
formed by always turning right when visiting a junction, i.e.,
a vertex. This is illustrated in Fig. 14 (left). For the required
angle measurements, the curve tangents ẋ(t) are evaluated at
the end vertex of the edge, i.e., at t0 or t1, respectively. The
edge traversal terminates when a loop was found, i.e., when
the traversal returns to the start vertex. By recording how often
a vertex was visited, we repeat the process until all patches
are inserted and no vertex is expecting another visit. Fig. 15
shows a number of exemplary edge graphs. In the following,

Fig. 15. Exemplary edge graphs to demonstrate the traversal order. Starting
from an arbitrary edge in an arbitrary direction, the traversal continues always
taking right turns until the loop is closed.

we list the corresponding traversal sequences.
(a) Traverse outer edge of a closed domain: v1 → e12 →

v2 → e23 → v3 → e34 → v4 → e41 → v1

(b) Traverse single edge: v1 → e12 → v2 → e12 → v1

(c) Traverse sequence of edges: v1 → e12 → v2 → e23 →
v3 → e23 → v2 → e12 → v1

(d) Traverse crossing of edges: v1 → e15 → v5 → e25 →
v2 → e25 → v5 → e35 → v3 → e35 → v5 → e45 → v4 →
e45 → v5 → e15 → v1

(e) Traverse closed loop with one vertex: v1 → e11 → v1

(f) Traverse closed loop with multiple vertices: v1 → e12
→ v2 → e21 → v1

c) Nested patches: A nested edge loop, as shown in
Fig. 14 (right), has an interior patch boundary curve sequence,
which bounds the patch that is contained by the edge loop,
and an exterior patch boundary curve sequence, which denotes
a patch boundary of the parent patch that contains the nested
edge loop. Due to the convention of always turning right during
the edge graph traversal, the two sequences are distinguished
by their turning number. For all interior curve sequences,
the boundary curve tangent performs a clockwise rotation
(negative turning number), while the tangent of the exterior
curve sequence performs a counter-clockwise rotation (positive
turning number) when traversing the edge loop. For an arclength
parameterized closed edge sequence e(s) : [s0, s1] → ∂Ω, the
integer-valued turning number is calculated by integrating the
signed curvature k(s) along the closed patch boundary curve:

turn(e(s)) =
1

2π

∫ s1

s0

k(s) ds, with k(s) =
det(ė(s), ë(s))

∥ė(s)∥3
.

(11)

d) Patch Laplacian: The patch Laplacian f(x) defines the
color gradient inside a patch, which is controlled by evaluating
and adding the Laplacian fp(t)(x) of Poisson curves p(t) ∈ P
and by sampling the color derivatives of gradient meshes, cf.
Section II-B.

f(x) =
∑

p(t)∈P

fp(t)(x)︸ ︷︷ ︸
Poisson curves

+
∑

ci(u)∈G

λi ·∆xci(u(x))︸ ︷︷ ︸
Gradient meshes

. (12)

If a patch boundary curve of a patch is part of a gradient mesh
interior, we add the gradient mesh to a list. Each Laplacian
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Zero Sum Average

First a) First b)

Fig. 16. Different options for handling overlapping gradient meshes. ’Zero’
sets the Laplacian to zero, which gives the smoothest possible interpolation
of the boundary conditions. ’Sum’ sums up the Laplacians, which can lead
to high values when many gradient meshes overlap. ’Average’ computes the
average of the Laplacians, which scales better to larger numbers of gradient
meshes. ’First’ only takes one of the Laplacians, for which we show both
options: choosing the smooth square in a) and the striped square in b).

∆xc(u(x)) can be evaluated analytically as explained in the
supplemental material (including the coordinate transformation
u(x) that takes image coordinates to a (u, v) coordinate in the
gradient mesh). When a patch is formed from one gradient
mesh, then the diffused color gradient inside the patch matches
exactly the color gradient of the interpolated gradient mesh. In
the event that multiple gradient meshes are overlapping at the
pixel coordinate x, we use a weighted sum of the gradient mesh
Laplacians to compute the source term f(x). We offer four
choices for how the weights λi are chosen. In the following,
let n be the number of gradient meshes, i.e., i ∈ {1, . . . , n}.

1) All weights are λi = 0, i.e., the Laplacians are ignored.
2) All weights are λi = 1, i.e., all Laplacians are summed.
3) All weights are λi =

1
n , i.e., the Laplacian’s are averaged.

4) Only one Laplacian is chosen with λ1 = 1, and the
others are set to zero λ2 = · · · = λn = 0.

Options 1) – 3) are order-independent, while option 4) requires
the specification of an order. We assume that the gradient
meshes G are given in a particular order by the user, i.e., we
choose the gradient mesh that is sitting ’on top’ of all others.
For this, the user interface contains a list of all gradient meshes,
which can be reordered by the user. Fig. 16 gives examples.

C. Implementation Detail

The turning number in Eq. (11) is calculated from the
polyline discretization, previously described in Section V-C,
by summing up the discrete turning angles. A loop is nested
inside another loop if one of its vertices is contained in the
other loop, since loops are by construction intersection free.
To determine containment bounding boxes are used to find
candidates and a detailed check is performed by using the
winding angle theorem [22], [47], which is a numerically
robust way of testing containment.

VII. IMAGE SYNTHESIS

In the following, we discuss how to rasterize a patch Ω into
a raster image that covers the image domain U .

A. Definition

The color field c(x) of a region Ω is determined by solving a
partial differential equation, i.e., a well-known Poisson problem:

∆c(x) = f(x), s.t. B ∈ ∂Ω (13)

with the patch Laplacian f(x) as given by Eq. (12) and subject
to the patch boundary conditions B that arise from the patch
boundary curves on ∂Ω, as introduced in Eqs. (7)–(8). There are
many ways how the Poisson problem could be solved, including
direct solvers, iterative solvers, or Monte Carlo methods. We
refer to a survey [55] for an overview of solvers in the smooth
vector graphics literature and also point out several recent
solvers, which appeared after the survey [2], [8], [36], [44],
[48]. Since the PDE solver is orthogonal to our contributions,
we utilized a simple (multi-grid) Jacobi relaxation [25]:

c
(n+1)
i,j =

∑
x∈{−1,1}

∑
y∈{−1,1} wi+x,j+y · c(n)i+x,j+y − h2fi,j

wi+1,j + wi−1,j + wi,j+1 + wi,j−1

(14)

which iteratively calculates the pixel color cij for a pixel (i, j)
from its neighbors such that it meets the target Laplacian fij
and where h is the grid spacing of pixels in the image domain
U . The weights wij are used to handle boundary conditions,
which is explained in the implementation details below.

B. Implementation Detail

We implemented the Jacobi relaxation on the GPU,
which requires a texture containing the target Laplacians
fi,j , a texture containing the type of the pixel ki,j ∈
{interior,Dirichlet,Neumann}, a bit mask on a staggered grid
that indicates whether horizontally and vertically adjacent
pixels are separated by a patch boundary curve shi,j , s

v
i,j ∈

{open, closed}, and a texture that stores the final pixel color
ci,j , see Fig. 17. If the pixel (i, j) is a:

1) interior pixel (ki,j = interior), then the weights of all
adjacent pixels are set to 1, i.e., wi+1,j = wi−1,j =
wi,j+1 = wi,j−1 = 1.

2) boundary pixel with Dirichlet condition (ki,j =
Dirichlet), then Eq. (14) is not executed. Instead, the color
of the pixel is determined by the boundary condition.

3) boundary pixel with Neumann condition (ki,j =
Neumann), then the weight of the adjacent pixel wi+1,j

is set to 1 (otherwise 0) if it is non-separated by a patch
boundary curve shi,j = open (analogous for the other
neighbor pixels).

We identify if a pixel is a boundary pixel in a pre-process
by determining the pixels that belong to the patch using the
winding angle theorem [22], and flag pixel (i, j) as boundary if
one of its neighbors (i+1, j), (i−1, j), (i, j+1), (i, j−1) is not
in the patch, or if a ray cast between adjacent pixels intersects a
patch boundary curve. We determine the closest patch boundary
curve and set the pixel type ki,j and the openness sn, se, ss,
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Fig. 17. Left: Given is a diffusion curve with Neumann condition (Bl) and
Dirichlet condition (Br). Right: depiction of the pre-computed masks. We
determine for each pixel, whether it is in the interior, at a Neumann boundary,
or a Dirichlet boundary, which is stored in ki,j . Further, we identify if adjacent
pixels are separated (horizontally or vertically) by a patch boundary curve,
and store this as binary flag in staggered grids shi,j , svi,j .

sw accordingly. If the pixel has a Dirichlet condition, then
we set ci,j according to the closest hit location on the patch
boundary curve. If the Dirichlet condition originated from an
input boundary curve that belonged to a gradient mesh, then we
interpolate the pixel color in the gradient mesh at the location
of the pixel center (i, j), rather than taking the color on its
boundary curve. The texture with the target Laplacian fi,j is
set by evaluating the gradient mesh Laplacian ∆xc(u(x)) (if a
gradient mesh was contained, cf. Eq. (12)), and the Laplacians
fp(t) of Poisson curves p(t) are additively rasterized on top.

VIII. RESULTS

In the following section, we present our results using scenes
that contain gradient meshes, diffusion curves, and Poisson
curves. We made all test scenes available online [54]. All
images are rendered at a resolution of 1024× 1024.

A. Qualitative Results

For all test scenes, we show results of only rasterizing
the gradient meshes in Fig. 18(a) and only rasterizing the
input curves in (b). This way, we can see which parts of the
image are modeled with gradient meshes or diffusion/Poisson
curves, respectively. To illustrate the input primitives, we depict
the gradient mesh control polygon with solid lines, where
different colors are applied for each mesh. Input boundary
curves are shown as double-sided curve with an illustration
of the respective boundary condition on the left and right.
Dirichlet conditions directly show the corresponding color,
while Neumann conditions are illustrated with a dash-dot
pattern. Poisson curves are visualized with a long dash pattern.
In (c), the undirected edge graph is visualized by solid black
curves and the vertices are depicted with black circles. Note
that Poisson curves are not part of the edge graph, since they
are rendered additively onto the target Laplacian function. The
unified patch representation in (d) gives all pixels that belong
to the same region a common color. The colors are assigned
from a custom color table such that the regions are visually
distinguishable. The color is not related to the image content.
The last column in (e) shows the final result.

a) Crane: Inspired from an ancient Chinese painting (the
Auspicious Cranes by Emperor Huizong), we modeled a crane
with diffusion curves, which is shown in Fig. 1. The boundary
of the crane is largely modeled with Neumann conditions. We
modeled the clouds with two 3×4 gradient meshes. In addition,
we added diffusion curves and Poisson curves on the gradient

meshes for the layered and detailed effects of clouds. The
background is formed from a 3× 3 gradient mesh that mimics
the similar color transition of the inspirational image.

b) Pepper: Fig. 18 (first row) shows an extension of
the poivron scene from Orzan et al. [38]. We replaced the
background with a 30× 30 gradient mesh that was fitted with
Adobe Illustrator to a photograph inside a restaurant. The
gradient mesh’s smoothness creates the impression of defocus
blur, putting emphasis on the pepper in the foreground. We
took a bite out of the pepper by adding further diffusion
curves. The outer boundary of the pepper is modeled with
homogeneous Neumann conditions, such that it can be placed
in the scene without causing color diffusion into the background.
The shadow on the table is modeled with Poisson curves.

c) Sunset: Fig. 18 (second row) shows a colorful sunset.
The color gradient in the background contains multiple hues and
is modeled with a 10×3 gradient mesh. We also deformed the
spatial control points for artistic effects. Since it is interrupted
by other curve primitives in-between, the color gradient would
have been difficult to model with diffusion curves only. The
sun is drawn using a diffusion curve, which allows for the
modeling of the faint glow into the background. On the top and
bottom of the image, we placed diffusion curves that contrast
the nature background with expressive wavy shapes.

d) Bubbles: In Fig. 18 (third row), we modeled two soap
bubbles. We used a 1×3 gradient mesh to model smooth color
transitions in the sky. The bubbles are created by two 4× 4
gradient meshes. The smooth color transitions are difficult to
model directly with diffusion curves. This example shows that a
vivid scene can be represented by a small number of primitives
when combining mesh-based and curve-based methods.

e) Ladybug: The test scene in Fig. 18 (fourth row) is
based on the ladybug diffusion curve model of Orzan et al. [38].
We made minor adjustments to the original curve endpoints
to remove edge crossings that would otherwise cause color
leakage. In addition, we set the outer boundary of the ladybug
to Neumann condition. We placed the ladybug in a beach scene,
which contains an ocean and a blue sky. The background is
modeled using a 11×3 gradient mesh. In addition, we modeled
a leaf on which the ladybug sits with a 6× 2 gradient mesh,
which captures the subtle color changes without smoothing.
The leaf veins are created with Poisson curves, and the outer
boundary is modeled with diffusion curves to add scattering.

f) Portal: The last test scene in Fig. 18 (fifth row) shows a
portal. We created the portal with three gradient meshes: a 4×3
background mesh, and two 3× 4 gradient meshes for the outer
and internal parts of the portal. The rendered portal contains
smooth color transitions to represent light and shadows. Inside
the portal, We modified the zephyr diffusion curve model of
Orzan et al. [38]. The diffusion curves diffuse color into the
portal. The mesh Laplacian provides richer effects and more
potential for artistic control compared to curve-only results.

B. Comparison with Vectorizations

So far, there exists no other method to compare with that
supports the image synthesis for scenes that contain both
gradient meshes and diffusion curves. However, once an
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(a) input meshes only (b) input curves only (c) undirected edge graph (d) unified patch representation (e) final synthesized image

Fig. 18. Qualitative results of the pepper, sunset, bubbles, ladybug, and portal scene. From left to right, we show the input primitives (a) and (b), the undirected
edge graphs (c), the unified patch representations (d) that were formed by our algorithm and the final rendering results (e).

automatic vectorization algorithm is developed for our unified
formulation, it should be possible to compare how well gradient
meshes only, diffusion curves only, and our unified formulation
are able to represent the same raster image. For now, we can
do a slightly different experiment. In Fig. 19, we take the
output from our unified renderer (a) and vectorize this image
using gradient meshes (b) and diffusion curves (c)-(d). For each
image, the input primitives and a difference image to (a) are
shown. The gradient meshes are placed manually using Adobe
Illustrator. We can see that gradient meshes have a difficult

time adjusting to local structures since they always subdivide
entire rows or columns, see for example the swirls behind the
crane. Diffusion curves are useful for modeling sharp edges
and details, which can be seen in the foreground objects across
all test scenes. In (c), the diffusion curves are vectorized using
Canny edge detection [37] on the multi-channel color gradient
of Di Zenzo [10], as done by Orzan et al. [38]. In (d), edges
are found using isocontours in the residual field as done by
[67], although without their subsequent shape optimization. For
both (c) and (d), we use the vectorization methods to fill the
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(a) reference image (ours) (b) gradient meshes (manual) (c) diffusion curves (Orzan) [38] (d) diffusion curves (isocontours) [67]

RMSE: 0.013 RMSE: 0.018 RMSE: 0.008

RMSE: 0.026 RMSE: 0.089 RMSE: 0.008

RMSE: 0.032 RMSE: 0.033 RMSE: 0.013

RMSE: 0.022 RMSE: 0.024 RMSE: 0.011

RMSE: 0.021 RMSE: 0.043 RMSE: 0.007

RMSE: 0.064 RMSE: 0.022 RMSE: 0.011

Fig. 19. Taking our result (a) as a reference, we test how well gradient meshes only (b) and diffusion curves only (c)-(d) approximate our result. Difference
images show that gradient meshes often better capture inhomogeneous gradients in the background, while diffusion curves capture details in the foreground.

areas of the gradient meshes, i.e., we take our diffusion curves
as initial set to start from. We can see in the difference images
that many diffusion curves are needed to represent the bi-cubic
color gradients of a gradient mesh, which is apparent in scenes
with complex backgrounds, such as in the pepper scene. While
(d) obtains a low reconstruction error, the high curve density
is not necessarily user-friendly. A gradient mesh could have
represented the inhomogeneous color gradients more compactly.
With our unified approach, both primitives can be combined
in the same scene.

C. User Interaction

When individual input primitives are moved in the scene by
the user, intersections with other primitives will occur that lead
to the creation or removal of patches. To ensure a consistent
editing experience, we made sure that all user input is specified
on the extended gradient meshes, extended diffusion curves, and
Poisson curves alone. On the front end, the user is not accessing
the edge graph or the patch representation, which are both
computed fully automatically from the input primitives. Fig. 20
shows the rendered output when taking a closed diffusion curve
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Fig. 20. During user interaction, new patches are formed and destroyed. To achieve a consistent scene editing experience, the user only edits input gradient
meshes, diffusion curves, and Poisson curves. The edge graph and the unified patches are not exposed to the user and are created fully automatically.

TABLE I
PERFORMANCE MEASUREMENTS FOR THE VARIOUS TEST SCENES USED IN THE PAPER. THE COLUMNS LIST THE CORRESPONDING FIGURE, THE NUMBER OF
INPUT DIFFUSION CURVES (#DC), THE NUMBER OF INPUT POISSON CURVES (#PC), THE NUMBER OF INPUT GRADIENT MESHES (#GM) FOR WHICH WE

LIST THE GRID RESOLUTION IN BRACKETS, THE NUMBER OF VERTICES (#V) AND EDGES (#E) IN THE EDGE GRAPH, THE NUMBER OF PATCHES (#P), THE
COMPUTATION TIME TO FORM THE EDGE GRAPH, THE COMPUTATION TIME TO TRAVERSE THE EDGE GRAPH, THE TIME NEEDED TO RESOLVE THE NESTING

OF PATCHES, AND THE NUMBER OF JACOBI ITERATIONS FOR RENDERING. ALL TIMINGS ARE IN MILLISECONDS.

Scene Figure #DCs #PCs #GMs #Vs #Es #Ps Construct graph Traverse graph Create patches It.
Crane Fig. 1 68 5 3 160 124 8 16 5 13 1 k
Pepper Fig. 18 (first row) 36 3 1 184 165 8 11 9 12 10 k
Sunset Fig. 18 (second row) 38 6 1 88 108 37 16 2 7 15 k
Bubble Fig. 18 (third row) 9 0 3 62 53 3 2 1 1 15 k

Ladybug Fig. 18 (fourth row) 59 8 2 111 113 20 14 2 16 2 k
Portal Fig. 18 (fifth row) 87 1 3 211 167 17 20 3 14 15 k

and moving it across a scene. Intersections with other diffusion
curves and gradient meshes are created, which causes new
patches to form or disappear. Using our data structures, the
results remain consistent throughout the editing process.

D. Performance Analysis

We evaluated our method on an Intel Core i9-10980XE with
4.6 Ghz and an Nvidia RTX 2080 TI GPU. The performance
measurements are reported in Table I. To give context we report
for each scene statistics about the complexity of the input data
(number of diffusion curves, number of Poisson curves, number
of gradient meshes), statistics on the complexity of the edge
graph (number of vertices and edges), and the number of
patches in our patch representation. We report the time it takes
to compute the edge graph, to traverse the edge graph during
the patch construction, and to resolve the nesting relationships.

Across all test scenes, the edge graph construction was at
around 12-17 ms, the edge graph traversal at 4-10 ms, and
the patch creation at 13-45 ms. In sum, we achieved across
all scenes an interactive frame rate (29-67 milliseconds per
frame). While we incorporated bounding volume hierarchies to
accelerate the intersection and containment tests, we think that
further improvements could include partial updates of both the
edge graph and the patch representation whenever an object
moves. Further, a hierarchical discretization could be used to
accelerate the winding angle tests. Despite us rebuilding the
graph and patches from scratch, we obtained interactive results.

To assess the scalability, we randomly generated a varying
number of diffusion curves in the unit square. The x-coordinates
of the control points were set to (0, 0.3, 0.7, 1.0). The y-
coordinates are random numbers in [0, 1]. This test leads to
a large number of edge crossings. In Fig. 21 (left), we plot
the total construction time as a function of the number of
vertices |V| in the edge graph, which is a measure of the scene
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Fig. 21. Scalability experiments (total time in milliseconds) for varying input
complexity (left) and discretization (right) on an Intel Core i7-6700K.

complexity. We observe that the runtime scales quadratically
in the number of graph vertices, which can be expected since
each edge is tested for intersections against each other edge.

Further, we examine the scalability of the algorithm for
varying polyline discretizations in the crane scene. In Fig. 21
(right), we varied the threshold τ ∈ {0.1, 0.05, . . . , 0.0001},
which leads to an increasing number of polyline vertices. We
observe that the total construction time scales nearly linear in
the number of polyline vertices. This observation holds for the
other scenes, as well, but with a different slope.

E. Discussion

The edge graph and our resulting patch construction directly
depend on the quality of the input primitives. If the input primi-
tives contain tiny gaps or small crossings, then a corresponding
patch representation would carry on those artifacts. In recent
years, more exact vector graphics rendering algorithms have
been developed and utilized, such as Walk-on-Spheres [43],
Walk-on-Boundaries [48], or Walk-on-Stars [44], or Walkin’
Robin [36]. These approaches likewise suffer from inaccuracies
in the scene description, since they are able to resolve the color
transport through narrow gaps. In Section V-C, we described
our scene preprocessing, which closes gaps to prevent color
leaking. To alleviate the need for such preprocessing, more
research towards user interfaces that naturally steer the user
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towards more accurate scene descriptions would be helpful for
both scene modeling and rendering.

IX. CONCLUSIONS

In this paper, we unified the mathematical modeling of mesh-
based vector graphics and curve-based vector graphics, which
allows for the first time to include both types of primitives
in the same scene. For this, we rephrased the interpolation
inside gradient meshes as solution to a Poisson problem by
searching for a color field that matches the Laplacian of the
gradient mesh. We developed a four-stage pipeline that takes
gradient meshes, diffusion curves, and Poisson curves as input.
First, we extended gradient meshes and diffusion curves by
enabling the specification of Neumann conditions in addition
to the usual Dirichlet conditions. Second, our approach handles
arbitrary intersections of diffusion curves and gradient meshes,
since all intersections are resolved through the construction of
an edge graph. Third, from the edge graph, non-overlapping
patches with well-defined boundary conditions and a target
Laplacian are derived. Fourth, a standard Poisson problem is
solved in the interior of each patch to synthesize the output
image. The final rasterized images can be computed with any
off-the-shelf Poisson solver.

In the past, research on mesh-based and curve-based smooth
vector graphics followed independent research threads, which
concentrated on the editing, rasterization, or vectorization of
the individual primitives. We hope that the unified treatment
will spur further research that promotes synergies of the two
approaches, for example regarding novel image synthesis or
vectorization methods. The next step in the generalization will
include the incorporation of bi-harmonic diffusion curves [13],
for which harmonic solutions can be searched in the Laplacian
domain. Similar to common content creation tools, it could be
useful to introduce multiple layers of smooth vector graphics.
Further, it would be interesting to develop a vectorization
algorithm for the unified patch description. It would be
imaginable to divide the input domain into regions. Per region,
the algorithm could decide whether it is better to fit a gradient
mesh or a set of diffusion curves. We leave the development
of a vectorization algorithm to future work.
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Transactions on Visualization and Computer Graphics, 22(2):1063–1075,
2015. doi: 10.1109/TVCG.2015.2440273

[64] E. F. Yilmazer, D. Vicini, and W. Jakob. Solving inverse PDE problems
using grid-free Monte Carlo estimators. ACM Transactions on Graphics,
43(6), Nov. 2024. doi: 10.1145/3687990

[65] Z. Yu, L. Wu, Z. Zhou, and S. Zhao. A differential Monte Carlo solver
for the poisson equation. In ACM SIGGRAPH 2024 Conference Papers,
SIGGRAPH ’24. Association for Computing Machinery, New York, NY,
USA, 2024. doi: 10.1145/3641519.3657460

[66] C. Yuksel, J. Keyser, and D. H. House. Mesh colors. ACM Transactions
on Graphics, 29(2), Apr. 2010. doi: 10.1145/1731047.1731053

[67] S. Zhao, F. Durand, and C. Zheng. Inverse diffusion curves using
shape optimization. IEEE Transactions on Visualization and Computer
Graphics, 24(7):2153–2166, 2017. doi: 10.1109/TVCG.2017.2721400

[68] H. Zhou, J. Zheng, and L. Wei. Representing images using curvilinear
feature driven subdivision surfaces. IEEE Transactions on Image
Processing, 23(8):3268–3280, 2014. doi: 10.1109/TIP.2014.2327807

[69] H. Zhu, J. Cao, Y. Xiao, Z. Chen, Z. Zhong, and Y. J. Zhang. TCB-
spline-based image vectorization. ACM Transactions on Graphics, 41(3),
2022. doi: 10.1145/3513132

Xingze Tian is currently working toward the PhD degree with the Friedrich-
Alexander-Universität Erlangen-Nürnberg, Germany. Her research interests
include visualization and computer graphics. Contact her at xingze.tian@fau.de.

Tobias Günther is a professor of computer science at the Friedrich-Alexander-
Universität Erlangen-Nürnberg, Germany. His research interests include
visualization and computer graphics. He received his PhD from the University
of Magdeburg in 2016. Contact him at tobias.guenther@fau.de.

https://doi.org/10.1145/2461912.2461917
https://doi.org/10.1145/2461912.2461917
https://doi.org/10.1145/3610548.3618141
https://doi.org/10.1145/3610548.3618141
https://doi.org/10.1109/TVCG.2012.76
https://doi.org/10.1109/TVCG.2012.76
https://doi.org/10.1109/ACCESS.2020.2982457
https://doi.org/10.1109/ACCESS.2020.2982457
https://doi.org/10.1007/s00371-019-01671-0
https://doi.org/10.1145/3592400
https://doi.org/10.1145/3687913
https://doi.org/10.1145/3687913
https://doi.org/10.1145/3658153
https://doi.org/10.1145/1274871.1274888
https://doi.org/10.1145/2483852.2483873
https://doi.org/10.1145/2483852.2483873
https://doi.org/10.1109/MCG.2011.86
https://doi.org/10.1111/cgf.12510
https://doi.org/10.1007/s00371-006-0051-1
https://doi.org/10.1007/s00371-006-0051-1
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1145/3386569.3392374
https://doi.org/10.1145/3592398
https://doi.org/10.1007/978-3-030-25027-0_23
https://doi.org/10.1016/0010-4485(90)90039-F
https://doi.org/10.1016/0010-4485(90)90039-F
https://doi.org/10.1145/3658228
https://doi.org/10.1145/3658228
https://doi.org/10.1145/3592109
https://doi.org/10.1145/3680528.3687599
https://doi.org/10.1145/1276377.1276391
https://doi.org/10.1145/2601097.2601187
https://doi.org/10.1145/2185520.2185570
https://doi.org/10.1145/2185520.2185570
https://doi.org/10.1109/AIPR.2006.30
https://doi.org/10.5281/zenodo.15095999
https://doi.org/10.1109/TVCG.2022.3220575
https://doi.org/10.1007/s11042-017-4987-0
https://doi.org/10.1111/cgf.15232
https://doi.org/10.1111/cgf.13826
https://doi.org/10.1145/1661412.1618461
https://doi.org/10.1111/cgf.14495
https://doi.org/10.1111/cgf.14495
https://doi.org/10.1109/TMM.2012.2233725
https://doi.org/10.1111/cgf.12524
https://doi.org/10.1109/TVCG.2015.2440273
https://doi.org/10.1145/3687990
https://doi.org/10.1145/3641519.3657460
https://doi.org/10.1145/1731047.1731053
https://doi.org/10.1109/TVCG.2017.2721400
https://doi.org/10.1109/TIP.2014.2327807
https://doi.org/10.1145/3513132

	Introduction
	Background
	Bézier Curves
	Mesh-based Methods
	Curve-based Methods

	Method Overview
	Input Primitives
	Definition

	Edge Graph
	Definition
	Construction
	Implementation Detail

	Unified Patches
	Definition
	Construction
	Implementation Detail

	Image Synthesis
	Definition
	Implementation Detail

	Results
	Qualitative Results
	Comparison with Vectorizations
	User Interaction
	Performance Analysis
	Discussion

	Conclusions
	References
	Biographies
	Xingze Tian
	Tobias Günther


