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1. Single vs. Complete Linkage

The distance matrix D ∈Rm×m contains the distance between each
pair of lines, where m corresponds to the total number of lines. Ini-
tially, each line is considered to be its own cluster. The most similar
clusters are identified by locating the minimum element in the dis-
tance matrix. When two clusters i and j merge, the corresponding
rows and columns in the distance matrix are updated. A commonly
used update rule is the Lance–Williams dissimilarity update for-
mula [MC12].

d(i∪ j,k) = αid(i,k)+α jd( j,k)+βd(i, j)+ γ|d(i,k)−d( j,k)|
(1)

Complete Linkage. The update formula can describe a wide range
of linkage methods such as the complete linkage criterion. It is de-
fined with αi = α j = γ = 1

2 ,β = 0 and the expression simplifies
to the maximum distance between all possible pairs of elements in
each group.

d(i∪ j,k) =
d(i,k)+d( j,k)+ |d(i,k)−d( j,k)|

2
(2)

= max(d(i,k),d( j,k)) (3)

The criterion produces highly compact clusters, as it requires all
intra-cluster distances to be small.

Single Linkage. Another commonly used method is the single
linkage criterion. It is defined as the minimum distance over all
possible pairs of each cluster. In terms of the Lance-Williams dis-
similarity update formula it sets αi = α j =

1
2 ,γ =− 1

2 and β = 0.

d(i∪ j,k) =
d(i,k)+d( j,k)−|d(i,k)−d( j,k)|

2
(4)

= min(d(i,k),d( j,k)) (5)

Single linkage produces more chain-like clusters since the nearest
neighbors between different clusters are merged. This may be mis-
leading in cases where two clusters are vastly different with the ex-
ception of a few singular points. With single linkage, such clusters
may be erroneously combined.

In Fig. 1 and Fig. 2, we compare the different linking methods for
the TORNADO and BORROMEAN datasets. Opacity optimization is
disabled, to clearly see the lines which are selected. In Fig. 1, the
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Figure 1: Visualization of the TORNADO dataset using complete
and single linkage for different numbers of clusters.
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Figure 2: Visualization of the BORROMEAN dataset using com-
plete and single linkage for different numbers of clusters.

single linkage criterion seems to favor clusters around the vortex
core line of the tornado. Other long outreaching chains of lines are
also clustered and chosen as representatives. The complete link-
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Figure 3: Methods for representative selection. The complete BOR-
ROMEAN dataset was reduced to a single cluster, which represents
one of the rings. The leftmost image showcases the mean represen-
tative, which generates a curve that was not present in the data. The
middle image illustrates the least distance representative, which
displays the line closest to all other lines within a cluster. The last
image shows the most important representative, which is the line
with the maximum total importance inside a cluster.

age criterion produces tighter groups, since lines are clustered with
the maximum intra-cluster distance. Therefore, the body of curved
lines of the tornado is better represented. In Fig. 2, the single link-
age criterion produces clusters around the long winding rings of
the BORROMEAN dataset, whereas the complete linkage criterion
struggles to capture this intrinsic structure. However, as the amount
of clusters is increased, both criteria begin to approach each other.
Empirically, for found that complete linkage delivered good results
in all our data sets and was therefore chosen as default choice. If
the fluid flow contains important structures resembling long chains
of lines, then the single linkage criterion yields more fitting clus-
ters. More suitable clusters enable us to reduce the total number of
clusters, without losing relevant information.

2. Selection of Representative Line

With the agglomerative clustering algorithm, we obtained a set of
clusters, each cluster containing a varying number of lines, and the
objective is to visualize each cluster by finding a representative line.
A line representative may be selected from the already existing set
of lines within a cluster or it may be constructed completely anew.

Mean Line Representative. In an attempt to capture all the in-
formation included in a cluster, the mean line representative is ob-
tained by calculating the sum of all lines within a cluster followed
by the division of the total number of lines. Unfortunately, this ap-
proach produces malformed lines due to difficulties arising from
lines with different lengths and varying discretizations as illustrated
in Fig. 3 (left). Furthermore, the newly constructed line is not guar-
anteed to be a streamline, making this an undesirable option.

Least Distance Representative. It is desirable to select represen-
tative lines that are contained in the clusters themselves. The least
distance representative is the line with the smallest total distance to
all other lines within its cluster. It is found by computing the filtered
distance matrix DC , which only consists of the rows and columns
representing lines contained in the cluster C = {x1, . . . ,xm} and
subsequently finding the minimum column sum.

Most Important Representative. The aim of the last method is
to be more in line with the objective of the opacity optimization.

Figure 4: Visualization of the BORROMEAN dataset using the mean
line representative, which produces ill-formed lines. In this exam-
ple, the rings collapsed, making this approach unsuitable.

Similarly to how important lines receive higher opacity values, im-
portant lines should also be preferably picked as cluster representa-
tives. The most important representative is calculated by selecting
the line with the highest average importance value along the line.

Comparison. In this section, we compare the three methods with
each other and provide an overview of their advantages and disad-
vantages. Initially, the mean line representative was implemented,
with the idea of condensing all lines of a cluster into a single one.
Unfortunately, this approach creates malformed lines. Especially,
intricate structures such as the rings of the BORROMEAN data set
are completely mangled by the mean representative as shown in
Fig. 4. Therefore, we introduced the least distance representative
and the most important representative. Both methods select an ex-
isting line inside of the cluster instead of creating a new one. How-
ever, which line is deemed as most suitable differs in both methods.
Their differences are investigated through the analysis of the cluster
representatives they produce in Fig. 5. The least distance represen-
tative method picks the line with the lowest distance to all others.
When the line distances only consist of the spatial dimension, then
important structures may not be chosen as representatives. There-
fore it may be necessary to incorporate the importance dimension
in the line distance computations in order to ensure important rep-
resentatives. The most important representative directly calculates
the total importance of each line within a cluster and returns the one
with the highest value. This approach guarantees the choice of im-
portant lines independent of the inclusion of importance in the dis-
tance metric. To summarize, the least distant representative should
be used, when the objective is to get the most accurate depiction of
the contents of each cluster. However, if we are more interested in
the structures marked as important, then it is necessary to tune the
importance scalar factor λg for the distance metrics. This process
can also be completely sidestepped by applying the most important
representative method. This method always returns the line with
highest total importance per cluster irrespective of the intra-cluster
distance values.
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Figure 5: Visualization of the BORROMEAN dataset with different
representative selection methods. The least distance representative
method picks the line with the lowest distance to all others. When
the line distance metric only considers the spatial dimensions, then
the rings are not well represented. If the line distance metric in-
corporates the importance dimension, then the rings are clearly
visible. The most important representative directly calculates the
total importance of all lines within a cluster. Therefore, structures
marked as important are included by default, independent of the
usage of importance in the distance metric.

3. Effect of Bin Size on Performance

In this section, we investigate the impact of the bin size N on the
total computation time and on the histogram related stages. The test
setup is identical to the performance measurement setup in the main
paper. Here, we focus on the BORROMEAN dataset. The results are
detailed in Table 1. The following trends emerge as the number

Bins Histogram CDF Exp. decay Total time
4 26.857 0.153 0.004 58.181
8 26.278 0.190 0.005 58.004
16 24.670 0.206 0.005 56.179
32 17.688 0.183 0.005 48.993
64 16.478 0.127 0.005 47.997
128 15.332 0.153 0.005 46.501
256 12.775 0.110 0.005 44.004
512 12.020 0.091 0.005 43.726
1024 10.330 0.072 0.006 41.782

Table 1: Computation times of the histogram-related stages for the
BORROMEAN dataset in milliseconds.

of bins is increased. The time to calculate the histogram and its
CDF decreases, whereas the time to compute exponential decay
largely remains unaffected. To calculate the histogram, the entire
fragment linked list buffer is iterated and each coloration and visi-
bility value is read. The coloration value is then used to determine
in which bin or, more precisely, in which pixel of the histogram
texture the visibility value is written. The additive blending into
the same pixel of the render target leads to overdraw, which causes
the slowdown. Increasing the number of bins generally leads to a
more even distribution of coloration values within the bins which
in turn leads to less overdraw. Consequently, the performance im-
proves when the number of bins is increased. The time required to
compute the CDF of the histogram also decreases as the number of
bins is increased. The CDF is calculated using the hills and steele

scan [HS86]. With low bin counts, the algorithm performs worse
than the serial implementation, due to its overhead. However, as
the number of bins increases, and with it the number of threads,
the computation time reduces. Lastly, exponential decay is almost
completely unaffected by the number of bins. The time required to
compute the exponentially damped CDF only slightly changes with
varying bin sizes. Theoretically, this problem scales linearly with
bin size, however due to its embarrassingly parallelizable nature it
is practically solved in near-constant time.

4. Effect of Cluster Size on Performance

In this section, we measure the effect of the cluster size on the
individual rendering stages using an AMD Ryzen 9 5900X and
an NVIDIA GeForce RTX 3070 TI. For this purpose, the CTBL
dataset has been rendered with different cluster sizes for the oth-
erwise identical performance measurement settings as described in
the main paper, with the exception of line width. The line width was
slightly reduced, since the original size leads to fragment linked
list overflows at cluster size 1200. The results are detailed in Ta-
ble 2. It is evident that the fragment linked list sorting stages are

Stage 400 600 800 1000 1200
Create list (LR) 0.75 1.24 1.61 1.97 2.27
Sort list (LR) 63.59 87.77 105.16 138.00 157.79
Comp. alpha 1.84 1.90 2.47 2.38 1.97
Smoothing 0.03 0.03 0.03 0.03 0.03
Fade alpha 0.04 1.25 0.07 0.08 0.09
Create list 0.89 1.07 1.60 1.91 2.19
Sort list 65.04 79.89 90.02 87.72 114.50
Histog. 2.19 2.67 2.73 2.87 2.32
Histog. CDF 0.01 0.26 0.01 0.01 0.01
Exp. decay 0.01 0.01 0.01 0.01 0.01
Render image 0.68 0.82 0.80 0.86 1.01
Total time 137.50 177.25 206.69 238.64 284.00

Table 2: Computation times in milliseconds per rendering stage for
a different number of clusters N in the CTBL dataset.

affected the most by the increase of the cluster size. This is because
the number of clusters (and thereby representative lines) increases,
which results in longer fragment linked lists. This is the case in
the CTBL dataset, which was visualized in the main paper in Fig.
5 (bottom right). The streamlines densely cover the viewport and
have a high degree of overlap. The extent to which lines overlap is
further increased due to the long length of most lines. Therefore,
each pixel will contain a number of lines rasterized into it, which
produces long fragment linked lists. While not comparable to the
sorting stages, the draw time of the list creation stages and alpha
computation stage also increase with the cluster count.
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